PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Autoimmune diseases get the NOD

ArticleInfo		
ArticleID	:	3984
ArticleDOI	÷	10.1186/gb-spotlight-20010219-03
ArticleCitationID	÷	spotlight-20010219-03
ArticleSequenceNumber	÷	55
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	:	2
ArticleHistory	·	RegistrationDate: 2001-02-19OnlineDate: 2001-02-19
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	·	
ArticleContext	÷	130592211

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Type 1 diabetes (also known as insulin-dependent diabetes mellitus, IDDM) is an autoimmune disease in which the patient's immune system destroys insulin-producing β cells of the pancreatic islets of Langerhans. The NOD (non-obese diabetic) mouse has served as a powerful animal model for deciphering the complex genetic contributions to IDDM disease. In the February Nature Genetics, Morahan *et al.* describe the identification of *IDDM18*, a new locus associated with human type 1 diabetes, following a hint from studies of NOD mice (*Nat Genet* 2001, **27**:218-221). A search for human homologs of NOD diabetes susceptibility loci led Morahan and colleagues to the human *IL12B* gene, which encodes a subunit of the interleukin 12 (IL-12) cytokine. They type 249 sibpairs for markers at the *IL12B* locus on chromosome 5q33-34. HLA-identical pairs showed strong linkage to this region. They identified a polymorphism in the 3' UTR of *IL12B* that appears to confer susceptibility by altering the levels of IL-12 expression. It is possible that the effect IL-12 has on regulating T-cell responses plays a role in other autoimmune diseases.

References

- 1. Insulin-dependent diabetes mellitus as an autoimmune disease.
- 2. Genetics of autoimmune diabetes in animal models.
- 3. Nature Genetics, [http://genetics.nature.com]

This PDF file was created after publication.