PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Restriction enzyme scissor cut

ArticleInfo		
ArticleID	:	3983
ArticleDOI	:	10.1186/gb-spotlight-20010219-02
ArticleCitationID	:	spotlight-20010219-02
ArticleSequenceNumber	:	54
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–02–19OnlineDate: 2001–02–19
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

BgIII is a type-II restriction endonuclease (RE) that recognizes and cleaves the DNA sequence AGACTC. The crystal structure of *BgI*II bound to DNA resembles other REs, with a major α/β core domain containing a central β sheet flanked by α helices. In the February Nature Structural Biology, Lukacs *et al.* describe the structure of the free *BgI*II enzyme, which provides an understanding of how DNA enters the binding cleft for hydrolysis (*Nat Struct Biol* 2001, **8**:126-130). It seems, from the freeenzyme structure, that an unusual scissor-like motion allows the entry of DNA. The individual monomers swing out by as much as 50°, like scissor blades, producing significant effects on the tertiary and quaternary structure. The free-*BgI*II structure offers a new model for understanding protein-DNA recognition events.

References

1. Cloning and characterization of the Bg/II restriction-modification system reveals a possible evolutionary footprint.

2. Understanding the immutability of restriction enzymes: crystal structure of BglII and its DNA substrate at 1.5 A resolution.

3. Nature Structural Biology, [http://structbio.nature.com]

This PDF file was created after publication.