PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Speciation induced by a bacterial symbiont?

ArticleInfo		
ArticleID	:	3974
ArticleDOI	:	10.1186/gb-spotlight-20010208-01
ArticleCitationID	:	spotlight-20010208-01
ArticleSequenceNumber	:	45
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001–02–08OnlineDate: 2001–02–08
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

The cytoplasmic symbiotic bacteria Wolbachia could induce host speciation in insects.

Wolbachia are symbiotic bacteria that live in the cytoplasm of an estimated 15-20% of all insect species, including wasps of the genus *Nasonia*. When two different species of *Nasonia* mate, hybrid offspring are suppressed. The presence of the bacteria causes an incompatibility between the sperm and egg of the two *Nasonia* species, resulting in the loss of the sperm's chromosomes upon fertilization.

Seth Bordenstein and colleagues at the University of Rochester, New York, report in the 8 February Nature, that *Nasonia* species treated with antibiotics produced large numbers of hybrid offspring (*Nature* 2001, **409**:707-710). Furthermore, the hybrids were viable and fertile. Thus, the incompatibility caused by these bacteria is the principal mechanism for the reproductive isolation between *Nasonia* species, implicating *Wolbachia* in the early stages of speciation in this genus of wasps.

Given that *Wolbachia* also infect arachnids, isopods and nematodes, their role in promoting speciation could be quite common.

References

1. University of Rochester, [http://www.rochester.edu/]

2. Bordenstein SR, O'Hara FP, Werren JH: *Wolbachia*-induced incompatibility precedes other hybrid incompatibilities in *Nasonia*. *Nature* 2001, 409:707-710, [http://www.nature.com/nature/]

This PDF file was created after publication.