PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Transcriptional targets

ArticleInfo			
ArticleID	:	3968	
ArticleDOI	:	10.1186/gb-spotlight-20010130-01	
ArticleCitationID	:	spotlight-20010130-01	
ArticleSequenceNumber	:	39	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate: 2001-01-30OnlineDate: 2001-01-30	
ArticleCopyright	:	BioMed Central Ltd2001	
ArticleGrants	:		
ArticleContext	:	130592211	

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

In the January 25 Nature, Iyer *et al.* describe an elegant technique to identify transcriptional target genes throughout the genome (*Nature* 2001, **409**:533-538). They combined chromatin immunoprecipitation (ChIP) with microarray analysis (DNA chips) to probe individual protein-genome interactions. The technique involved cross-linking, immunoprecipitation, PCR amplification and fluorescent labeling, followed by hybridization to microarrarys containing genomic DNA. They searched the yeast genome for intergenic regions that contained functional binding sites for the cell cycle transcription factors SBF (Swi6/Swi4) and MBF (Swi6/Mbp1). They identified 183 SBF-regulated genes, many of which are involved in budding or cell wall biogenesis. The 98 potential MBF target genes include those implicated in DNA replication, recombination and repair. And 43 loci appear to be targets of both factors. This is a powerful technique for identifying common and distinct targets of related transcription factors.

References

- 1. Nature, [http://www.nature.com]
- 2. Microarrays.org, [http://www.microarrays.org]
- 3. Saccharomyces genome database, [http://genome-www.stanford.edu/Saccharomyces/]

4. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF, [http://genomewww.Stanford.edu/chromatinip]

This PDF file was created after publication.