PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Gastric interactions

ArticleInfo		
ArticleID	:	3957
ArticleDOI	:	10.1186/gb-spotlight-20010117-01
ArticleCitationID	:	spotlight-20010117-01
ArticleSequenceNumber	:	28
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001-01-17OnlineDate: 2001-01-17
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Large numbers of protein-protein interactions have been mapped for yeast and worms, and now in the January 11 Nature, Rain *et al.* present the first large set of interactions for a prokaryote (*Nature* 2001, **409:**211-215). The two-hybrid screen of 261 proteins from the gastric pathogen *Heliobacter pylori* against a library of genome-encoded polypeptides revealed 1,200 putative interactions. Screening against a library allows the identification of interacting domains, and reduces the rate of false negatives encountered in classical pair-wise screens. A strong selection protocol reduces the number of false positives. Rain *et al.* also use a probability score to compute the likelihood that a given two-hybrid result is a consequence of background noise, and use some of the identified interactions to assign various proteins to particular biological pathways.

References

- 1. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.
- 2. Protein interaction mapping in C. elegans using proteins involved in vulval development.
- 3. *Nature*, [http://www.nature.com/nature/]