PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Cycling surprises

ArticleInfo		
ArticleID	:	3948
ArticleDOI	:	10.1186/gb-spotlight-20010104-03
ArticleCitationID	:	spotlight-20010104-03
ArticleSequenceNumber	:	19
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2001-01-04OnlineDate: 2001-01-04
ArticleCopyright	:	BioMed Central Ltd2001
ArticleGrants	:	
ArticleContext	:	130592211

Array analysis of dividing cells has been tackled for yeast, but in the January Nature Genetics Cho *et al.* present the first large-scale analysis in human cells (*Nat Genet* 2001, **27**:48-54). They identify731 of 40,000 human genes and expressed sequence tags (ESTs) as being cell cycle regulated in primary fibroblasts, and use a functional classification system to identify coordinate regulation of pathways. Notable surprises include upregulation of motility-related genes in G2 (perhaps to prepare daughter cells for migration away from each other), and of extracellular matrix-associated genes in M (possibly to enhance the re-establishment of cell-cell contact and communication after mitosis).

References

- 1. Expression monitoring by hybridization to high-density oligonucleotide arrays.
- 2. A genome-wide transcriptional analysis of the mitotic cell cycle.
- 3. Nature Genetics, [http://www.nature.com/ng/]
- 4. Supplementary data to Nat Genet 2000, 27:48-54, [http://www.salk.edu/LABS/chipdata/]