PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

MODY-fying gene expression in diabetes

ArticleInfo		
ArticleID	:	3762
ArticleDOI	:	10.1186/gb-spotlight-20000912-01
ArticleCitationID	:	spotlight-20000912-01
ArticleSequenceNumber	:	199
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2000–09–12 OnlineDate : 2000–09–12
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

Jonathan B Weitzman

Email: JWeitzman@elabseurope.com

HNF1 α (hepatocyte nuclear factor 1) was originally isolated as a liver transcription factor. So it came as a sweet surprise to researchers when HNF1 α was identified as the gene mutated in patients suffering from MODY3, maturity onset diabetes of the young subtype 3. As they report in the 15 August EMBO Journal Wang *et al.* (*EMBO Journal* 2000, **19**:4257-4264) used a tetracyclin-regulated system to identify genes controlled by HNF1 α . They expressed the most common diabetes-associated mutant form of HNF1 α (P291fsinsC) in the INS-1 insulinoma cell line. This mutant form reduced the expression of several genes important for pancreatic β -cell function and inhibited expression of the insulin gene. Other genes suppressed by HNF1 α include those involved in glucose transport (GLUT2) and glycolysis (e.g. encoding proteins aldolase B and L-pyruvate kinase). These inhibitory effects result in reduced cellular insulin, insulin secretion and ATP production.

References

- 1. Mutations in the hepatocyte nuclear factor-lalpha gene in maturity-onset diabetes of the young.
- 2. EMBO Journal, [http://www.emboj.org/]
- 3. Transcriptional activation by tetracyclines in mammalian cells.