PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

The big-tomato gene

ArticleInfo			
ArticleID	:	3720	
ArticleDOI	:	10.1186/gb-spotlight-20000710-01	
ArticleCitationID	:	spotlight-20000710-01	
ArticleSequenceNumber	:	157	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate: 2000-07-10OnlineDate: 2000-07-10	
ArticleCopyright	:	BioMed Central Ltd2000	
ArticleGrants	:		
ArticleContext	:	130591111	

William Wells
Email: wells@biotext.com

Quantitative trait loci (QTLs) are genes whose variation controls continuous characteristics such as height and weight. Multiple QTLs for a single trait have made for complicated genetics and slow progress in moving from correlation to work with single genes. But in the July 7 Science Frary *et al.* isolate *fw2.2*, a gene whose small-fruit version can reduce the size of tomato fruit by 30% (*Science* 2000, **289**:85-88). The gene is expressed at higher levels in the carpels (which ultimately develop into fruit) of small-fruited plants. These carpels have fewer cells, and the predicted structural similarity of the products of *fw2.2* and the Ras oncogene suggest that *fw2.2* may play a role in cell cycle control.

References

1. Science magazine, [http://www.sciencemag.org/]

This PDF file was created after publication.