PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Replicating both ways

ArticleInfo		
ArticleID	\Box	3714
ArticleDOI		10.1186/gb-spotlight-20000629-02
ArticleCitationID	\Box	spotlight-20000629-02
ArticleSequenceNumber	$\begin{bmatrix} \vdots \end{bmatrix}$	151
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	$\begin{bmatrix} \vdots \end{bmatrix}$	2
ArticleHistory	:	RegistrationDate : 2000–06–29 OnlineDate : 2000–06–29
ArticleCopyright		BioMed Central Ltd2000
ArticleGrants	\Box	
ArticleContext		130591111

William Wells

Email: wells@biotext.com

Archeal DNA replication proteins are closely related to eukaryotic counterparts, but in the June 23 Science Myllykallio *et al.* report that the archeon *Pyrococcus abyssi* has a bacterial mode of replication (*Science* 2000, **288**:2212-2215). Myllykallio *et al.* use the excess of G over C in the leading replication strand to identify a single origin of bi-directional replication in *Pyrococcus*. A comparison with a related archeon reveals that, as in bacteria, the replication terminus is a hotspot of genome shuffling. These two similarities with bacteria may be evidence for either convergent evolution or conservation of replication characteristics from the time of a common ancestor.

References

- 1. Archaea and the origin(s) of DNA replication proteins.
- 2. Science, [http://www.sciencemag.org/]