PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Don't blame the translocations

ArticleInfo		
ArticleID	:	3693
ArticleDOI		10.1186/gb-spotlight-20000602-01
ArticleCitationID	\Box	spotlight-20000602-01
ArticleSequenceNumber	:	130
ArticleCategory		Research news
ArticleFirstPage		1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2000–06–02 OnlineDate : 2000–06–02
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells

Email: wells@biotext.com

Chromosomal rearrangements could, in theory, cause speciation by inducing chromosome loss and missegregation after the mating of two recently diverged species. Fischer *et al.* test this theory in the 25 May Nature and find it wanting (*Nature* 2000, **405**:451-454). They detect translocations by hybridizing probes from each arm and centromere of *Saccharomyces cerevisiae* chromosomes to chromosome blots from five other *Saccharomyces* species. The distribution of the ten detected translocations amongst the species indicates that the rate of formation of new translocations is not constant, and translocations are not a necessary part of speciation. Breakpoints occur preferentially in regions with repeated sequences, such as tRNAs and Ty elements.

References

- 1. The mismatch repair system contributes to meiotic sterility in an interspecific yeast hybrid.
- 2. Nature magazine, [http://www.nature.com/nature/]