PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

An inchworm unwinds

ArticleInfo		
ArticleID	:	3690
ArticleDOI	:	10.1186/gb-spotlight-20000526-02
ArticleCitationID	:	spotlight-20000526-02
ArticleSequenceNumber	:	127
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-05-26OnlineDate: 2000-05-26
ArticleCopyright	:	BioMed Central Ltd2000
ArticleGrants	:	
ArticleContext	:	130591111

William Wells Email: wells@biotext.com

In the 18 May Nature, Blanco and Kowalczykowski report on the motions of the RecBC DNA helicase, a protein that unwinds DNA strands during homologous recombination in *Escherichia coli*. The helicase needs a double-stranded blunt end to load onto DNA, but can then move along a single strand from 3' to 5'. A large gap in this strand causes the helicase to fall off. If the gap is shorter, however, the helicase leaps over the gap (*Nature* 2000, **405**:368-372). By varying the length of the initial double-stranded section and the subsequent single-stranded gap, the researchers show that the helicase moves in approximately 23-nucleotide steps from its point of loading. A helicase that initially traverses 31 nucleotides of double-stranded DNA, for example, can subsequently jump a gap up to a maximum of 15 nucleotides in length. Blanco and Kowalczykowski propose that the helicase domain catches up to the leading binding domain in multiple steps of 2-5 basepairs each.

References

- 1. Nature, [http://www.nature.com/nature/]
- 2. Helicases: a unifying structural theme?