PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Methylated but noisy

ArticleInfo			
ArticleID	:	3686	
ArticleDOI	:	10.1186/gb-spotlight-20000518-02	
ArticleCitationID	\Box	spotlight-20000518-02	
ArticleSequenceNumber	:	123	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate : 2000–05–18 OnlineDate : 2000–05–18	
ArticleCopyright	:	BioMed Central Ltd2000	
ArticleGrants	:		
ArticleContext	:	130591111	

William Wells

Email: wells@biotext.com

Interfering with DNA methylation in the plant *Arabidopsis*, as in animals, disrupts transcriptional gene silencing. But the reverse is not necessarily true. In the 11 May Nature Amedeo *et al.* describe the first plant or animal gene that, when inhibited, results in disrupted silencing but intact methylation (*Nature* 2000, **405**:203-206). They find the gene, *MOM1*, by looking for expression from a silenced drug-resistance locus after a random-insertion mutagenesis. The most noticeable homology in MOM1 protein is to the ATPase/helicase region of the SWI2 silencing protein. MOM1 may aid in silencing by acting either downstream or independent of methylation.

References

- 1. Demethylation-induced developmental pleiotropy in Arabidopsis.
- 2. Nature Genetics, [http://www.nature.com/nature/]