PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Microarrays for secreted proteins

ArticleInfo		
ArticleID	:	3673
ArticleDOI	:	10.1186/gb-spotlight-20000428-02
ArticleCitationID	:	spotlight-20000428-02
ArticleSequenceNumber	:	110
ArticleCategory	÷	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2000-04-28OnlineDate: 2000-04-28
ArticleCopyright	÷	BioMed Central Ltd2000
ArticleGrants	÷	
ArticleContext	:	130591111

Secreted and membrane-associated proteins are important drug targets, but algorithms for recognizing the corresponding genes are imperfect, especially when the entire coding sequence is not available. Diehn *et al.* report in the May Nature Genetics that these proteins can be catalogued in two easy steps (*Nature Genet.* 2000, **25**:58-62). Diehn *et al.* isolate membrane-bound mRNAs (attached to polysomes) and cytosolic mRNAs, followed by hybridization of the corresponding cDNAs to DNA microarrays. The majority of the known mRNAs that are enriched in the membrane fraction encode for secreted or membrane-bound proteins. Based on this correspondence, Diehn *et al.* claim to have identified over 275 human genes and 285 yeast genes that are likely to encode previously unrecognized secreted or membrane proteins.

References

1. Nature, [http://www.nature.com/ng/]