
http://genomebiology.com/2002/3/8/research/0042.1

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Research
Identification of genes involved in ceramide-dependent neuronal
apoptosis using cDNA arrays
Charles Decraene*†, Bernard Brugg‡, Merle Ruberg§, Eric Eveno*,
Christiane Matingou*, Fariza Tahi*¶, Jean Mariani‡, Charles Auffray* and
Geneviève Pietu*†

Addresses: *Genexpress, CNRS FRE 2376, BP8, 94801 Villejuif, France. ‡Neurobiologie des Processus Adaptatifs, UMR 7102 CNRS-UPMC,
Université Pierre et Marie Curie, Paris, France. §INSERM U289, Hôpital de la Salpêtrière, 75013 Paris, France. Current addresses: †CEA
Service de Génomique Fonctionnelle, 2 rue Gaston Crémieux, 91057 Evry Cedex, France. ¶Université d’Evry-Val d’Essonne, 91025 Evry,
France. 

Correspondence: Geneviève Pietu. E-mail: pietu@dsvidf.cea.fr

Abstract

Background: Ceramide is important in many cell responses, such as proliferation,
differentiation, growth arrest and apoptosis. Elevated ceramide levels have been shown to induce
apoptosis in primary neuronal cultures and neuronally differentiated PC12 cells. 

Results: To investigate gene expression during ceramide-dependent apoptosis, we carried out a
global study of gene expression in neuronally differentiated PC12 cells treated with C2-ceramide
using an array of 9,120 cDNA clones. Although the criteria adopted for differential hybridization
were stringent, modulation of expression of 239 genes was identified during the effector phase of
C2-ceramide-induced cell death. We have made an attempt at classifying these genes on the basis
of their putative functions, first with respect to known effects of ceramide or ceramide-mediated
transduction systems, and then with respect to regulation of cell growth and apoptosis.

Conclusions: Our cell-culture model has enabled us to establish a profile of gene expression
during the effector phase of ceramide-mediated cell death. Of the 239 genes that met the criteria
for differential hybridization, 10 correspond to genes previously involved in C2-ceramide or TNF-�
signaling pathways and 20 in neuronal disorders, oncogenesis or more broadly in the regulation of
proliferation. The remaining 209 genes, with or without known functions, constitute a pool of
genes potentially implicated in the regulation of neuronal cell death.
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Background 
Ceramide is an intracellular lipid second messenger gener-

ated in response to a large number of extracellular signals

[1,2]. These include tumor necrosis factor-alpha (TNF-�),

interleukin-1 beta (IL-1�), ionizing and ultraviolet radiation,

anti-cancer drugs, growth-factor withdrawal, infection by

human immunodeficiency virus (HIV) or bacteria. It is

reported to participate in cell differentiation [3], senescence

[4], growth arrest or programmed cell death [1,2], depend-

ing on the cell type. 

The role of ceramide in programmed cell death or apoptosis

has been described in lymphocytes [5], macrophages [6],

neurons in primary culture [7-8] and neuronally differentiated
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PC12 cells [9-11]. A number of downstream targets of ceramide

have been identified. The best documented are the ceramide-

activated protein phosphatases (CAPP) and the ceramide-acti-

vated protein kinase (CAPK). The former, represented by the

PP1 and PP2A families, mediate the effect of ceramide on the

transcription factors c-Myc [12] and c-Jun [13]. CAPK is

involved in the mitogen-activated protein (MAP) kinase

(MAPK) cascades that include the extracellular-signal regu-

lated kinases (ERK), the c-Jun N-terminal kinases or stress-

activated kinases (JNK/ SNK/SAPK) and the p38 family [14].

Recently, it has been shown that C2-ceramide rapidly

decreases phosphorylation of ERKs, but increases p38 and

JNK phosphorylation, activating the transcription factors

c-Fos, c-Jun and p53, during the effector phase of apoptosis in

primary cortical neurons [15]. It also regulates the protein

kinase B (Akt/PKB)-dependent survival pathways, inactivat-

ing Akt by dephosphorylation and activating the Bcl-2-related

protein BAD by phosphorylation [16-18]. Ceramide-induced

apoptosis in neurons or in neuronally differentiated PC12 cells

has been associated with mitochondrially produced reactive

oxygen species (ROS) as well as activation and nuclear

translocation of the transcription factor NF�B [10,11,19]. All

these molecular events are observed during the effector phase

of ceramide-induced apoptosis which also includes gene

expression and new protein synthesis required for ceramide-

mediated cell death, as it has been shown that neuronal cell

death can be inhibited by cycloheximide [7]. 

Figure 1
Morphological characteristics of nerve growth factor (NGF)-differentiated PC12 cells during C2-ceramide-induced apoptosis. (a) Control cultures of
PC12 cells after 6 days in the presence of NGF viewed by phase-contrast microscopy; (b) NGF-differentiated PC12 cells after 24 h treatment with 25
�M C2-ceramide. Open arrows, viable cells; white arrows, dead cells. (c,d) Condensed and fragmented nuclei of dead cells in (c) control and (d) NGF-
differentiated PC12 cells visualized by intercalation of propidium iodide into DNA were viewed under epifluorescence illumination.

(a) (b)

(c) (d)
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The genes that are transcriptionally regulated during

ceramide-mediated cell death are still poorly documented.

To study gene expression during neuronal cell death, we

carried out a differential screen of an array of 9,120 cDNA

clones from a human infant brain library (library 1NIB [20])

with complex cDNA targets derived from neuronally differ-

entiated rat pheocytochroma PC12 cells treated with

C2-ceramide compared to control PC12 cells. This model is

particularly suitable for establishing a gene-expression

profile during ceramide-mediated neuronal death because

first, the neuronal cell population is synchronized and

homogeneous, unlike brain tissue or primary neuronal cul-

tures, and second, because the use of exogenous C2-ceramide

eliminates the risk of interference by transcripts activated by

signal transducers upstream of ceramide in the cell-death

pathway or in pathways activated in parallel.

Results 
Cell death induced in neuronally differentiated PC12
cells by C2-ceramide 
The morphological characteristics of differentiated PC12

cells after 24 hours in the presence of 25 �M C2-ceramide

were compatible with cell death by apoptosis. Compared

with control cultures, as viewed by phase-contrast

microscopy (Figure 1a), C2-ceramide-treated cells lost their

neurites and became rounded and shrunken after 24 hours

of treatment (Figure 1b). The cells that remained viable in the

C2-ceramide-treated cultures were refringent (Figure 1b), like

those in the control cultures (Figure 1a), and excluded the

vital marker propidium iodide (Figure 1c), whereas the dead

cells took up propidium iodide that intercalated into their

DNA (Figure 1d), revealing condensed and fragmented

nuclei. As previously described, when neuronally differenti-

ated PC12 cells or primary cultures of mesencephalic

neurons were treated with cell-permeant C2-ceramide

(10-50 �M), they died in a dose-dependent manner [7,10].

At 25 �M no significant cell death was observed until

12 hours after the initiation of treatment (Figure 2a). After

24 hours, 50% of the cells had died. By 48 hours, no viable

cells remained. Furthermore, we observed activation of

caspase-3/CPP32, a member of the cysteine-activated aspar-

tate family of cell-death proteases [21], that started 8 hours

after the beginning of ceramide treatment and was five times

the control value by 18 hours (Figure 2b). No significant cell

death and caspase-3/CPP32 activity were observed using

the inactive C2 analog of ceramide, C2-dihydroceramide

(Figure 2).

Validation of hybridization signals 
Hybridization of 9,120 cDNA clones with complex cDNA

targets from poly(A)+ RNA extracted from C2-ceramide-

treated or control cells produced signals of varying intensi-

ties (Figure 3a). In order to eliminate clones for which no

reproducible hybridization signals were obtained, the signal-

intensity values were validated as described in Materials and

Figure 2
Characterization of C2-ceramide-induced apoptosis. (a) Time course of cell death induced by 25 �M C2-ceramide (circles) or by 25 �M C2-dihydro-
ceramide (triangles). Cells were counted in at least 10 randomly chosen fields with a 20x objective. The percentage of cells excluding the vital dye
propidium iodide was calculated at each time point after the beginning of C2-ceramide treatment with respect to the corresponding control. (b) Time
course of caspase-3-like activity after 25 �M C2-ceramide (circles) or 25 �M C2-dihydroceramide (triangles) treatment. Data are mean ± SEM (bars)
values of at least three experiments, performed in triplicate. The black arrows indicate the time of C2-ceramide treatment of the cell cultures used in the
expression study.
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Figure 3
Hybridization signal analysis. (a) Macroarray of 9,120 cDNA clones hybridized with complex cDNA targets derived from mRNA of neuronally
differentiated PC12 cells without C2-ceramide treatment (control) or treated with C2-ceramide (stimulated). (b) Distribution of the hybridization signal
intensities between control and stimulated cells. Some genes identified in the present study are indicated.
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methods. Thus, 7% of the clones hybridized with the control

cDNA target (634) and 14% of clones hybridized with the

C2-ceramide-treated cDNA target (1,297) were excluded

from further analysis. The remaining 6,494 clones were ana-

lyzed for differential hybridization.

Differential gene expression in neuronally
differentiated PC12 cells treated with C2-ceramide
compared to controls 
Changes in gene expression were analyzed during the effec-

tor phase of neuronal death, 7 hours after the beginning of

C2-ceramide treatment. This time point was chosen because

on the one hand it is preceded by the activation of the tran-

scription factor NF�B and c-Jun observed 4 to 6 hours after

C2-ceramide treatment in PC12 cells [10,22], and on the

other, the apoptotic process is still not induced by caspase-3

activation, which occurs 8 hours after the beginning of

C2-ceramide treatment. 

Hybridization between the rat PC12 cell-derived targets and

the human cDNA macroarray was carried out as described

in Materials and methods. Modulation of gene expression

was quantitated by calculating the ratio of the intensity of

the normalized hybridization signal obtained with the

C2-ceramide cDNA target to that obtained with the control

target. Clones were considered to be differentially

hybridized in C2-ceramide-treated cells compared to control

cells if the ratio between the corresponding hybridization

intensity values was � 2 (up-hybridized clones) or � 0.5

(down-hybridized clones) which are the limits of confidence

for the method. To decrease the risk of false-positive

results, clones with hybridization signals that were less than

twofold above background were also excluded, resulting in

the elimination of 538 clones. In addition, the remaining

clones were hybridized with complex cDNA targets from

poly(A)+ RNA extracted from C2-dihydroceramide-treated

cells used as negative control and compared to untreated

cells. No modulation of expression was observed (except for

one clone excluded from the analysis) in the presence of this

inactive analog of C2-ceramide (data not shown). Among

the 239 clones that met the criteria for differential hybridiza-

tion, 132 were up-hybridized in C2-ceramide-treated cells

and 107 were down-hybridized. The distribution of the

hybridization-intensity values between the control and the

C2-ceramide complex cDNA targets is presented in

Figure 3b. Approximately 55% (72/132) of the up-hybridized

clones were hybridized 3-6-fold more in C2-ceramide-

treated cells than in the control and 40% (41/107) of the

down-hybridized clones were hybridized 3-9-fold less.

Partial 5´ and 3´ sequences of the 239 clones were compared

with all the sequences in the database developed in our labo-

ratory (the Genexpress Index [23]) and in public databases.

Of the 239 clones, 179 clones corresponded to already identi-

fied human genes, 113 of which have defined functions. The

remaining 60 clones corresponded to genes with limited

characterization. Under the hypothesis that differential

hybridization of the clones reflects linear modulation of
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Figure 4
Differentially expressed genes that encode proteins with functions involved in ceramide-dependent apoptosis. Black boxes, Genes involved in the
ceramide signaling pathway; gray boxes, genes transcriptionally stimulated by TNF-�; white boxes, genes involved in the TNF-� signaling pathway.

−3 −2 −1 0 1 2 3 4 5 6

PLA2G4C

CLN3

BIRC1

AXL

RSU-1

MAPK10

Downregulated genes Upregulated genes

ETV5

NPTX2

COL18A1

TNFAIP1

Fold
change



expression of the corresponding genes, we assume that we

have detected differential gene expression using cDNA array

technology that can be interpreted according to the informa-

tion available.

Ten differentially expressed genes encode proteins with a

role in ceramide or TNF-� signaling pathways (Figure 4,

Table 1; see [24] for links to database entries for each gene).

Two of these genes, PLA2G4C [25] and CLN3 [26,27] seem

to have a role in ceramide-mediated cell death or survival.

Two upregulated genes (ETV5 [28], NPTX2 [29,30]) and

two downregulated genes (COL18A1 [31,32], TNFAIP1 [33])

encode proteins that are modulated by TNF-�. Four genes,

three upregulated (AXL [34], BIRC1 [35], RSU1 [36]) and

one downregulated (MAPK10 [37]) encode proteins with a

role in the TNF-� signaling pathway.

Twenty clones correspond to genes encoding proteins that

have been involved in the regulation of apoptosis and/or cell

growth (Figure 5, Table 2, see [24]). Fourteen are up-

hybridized and six are down-hybridized by C2-ceramide. Ten

of the upregulated and two of the downregulated genes encode

proteins stimulating apoptosis and/or growth arrest. The other

genes (four upregulated and four downregulated) encode pro-

teins downregulating apoptosis and/or stimulating growth.

The remaining 83 clones corresponding to 82 genes with

known or putative functions have no obvious relation to the

apoptosis process (Table 3, see [24]). Of the total number of

differentially hybridized clones, 66 correspond to mRNA

sequences (Table 4, see [24]) and 60 to poorly characterized

genes (Table 5, see [24]) that encode proteins without

known function.

To confirm the results obtained by macroarray analysis, differ-

entially expressed transcripts representing upregulated or

downregulated genes were analyzed for differential expression

by reverse transcription PCR (RT-PCR) or northern blots. As

shown in Figure 6, the upregulation of ETV5, M6PR and APCL

was confirmed by RT-PCR, and the downregulation of two

genes with unknown function (mRNA DKFZp586C1723 and

GENX 2969) was confirmed by northern blotting.
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Table 1

Genes differentially expressed in ceramide-dependent apoptosis and involved in the ceramide and TNF-�� pathways

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity Gene 
accession symbol
number

Genes involved in the C2-ceramide signaling pathway

yf59e08 5705 R13531 Hs.18858 3.56 0.54 12.01 0.86 3.37 Phospholipase A2, group PLA2G4C
IVC (cytosolic, calcium-independent)

yf71a08 115123 R12998; Hs.194660 1.14 0.23 2.53 0.15 2.21 Ceroid-lipofuscinosis, neuronal 3, CLN3
R40387 juvenile (Batten, Spielmeyer-Vogt disease)

Genes transcriptionally stimulated by TNF-�

yg86b08 4272 R53048; Hs.43697 1.72 0.18 8.77 0.58 5.09 Ets variant gene 5 (ets-related molecule) ETV5
R53135

yc86d06 5838 F12910; Hs.3281 3.61 0.48 11.54 0.61 3.19 Neuronal pentraxin II NPTX2
T75064

yc88f11 197 F10424; Hs.78409 1.18 0.21 0.55 0.11 0.47 Collagen, type XVIII, alpha 1 COL18A1

F12821

yf78g01 200888 R14176; Hs.76090 1.19 0.28 0.54 0.06 0.46 TNF-�-induced protein 1 (endothelial) TNFAIP1
R40470

Genes involved in the TNF-� signaling pathway

yf76d09 1017 R13424; Hs.83341 1.49 0.23 5.45 0.54 3.65 AXL receptor tyrosine kinase AXL
R40936

yg49f10 116415 R20716 Hs.79019 4.54 0.13 12.69 1.38 2.80 Baculoviral IAP repeat-containing 1 BIRC1

c-26g10 1350 F07467 Hs.75551 1.37 0.27 2.81 0.56 2.05 Ras suppressor protein 1 RSU1

c-08d10 4997 F05370; Hs.151051 4.94 1.06 2.41 0.51 0.49 Mitogen-activated protein kinase 10 MAPK10
Z38358

Clone ID, clone name according to the public databases. GENX, cluster name including the corresponding cDNA sequence in the Genexpress Index 2
([23] and R. Mariage-Samson et al., unpublished data). UniGene, cluster name in the UniGene database [85]; C. int., mean of the normalized and validated
intensity values obtained after filter hybridization with complex cDNA target derived from control mRNA. C. SD, standard deviation derived from the
C. int. S. int., mean of the normalized and validated intensity values obtained after filter hybridization with complex cDNA target derived from ceramide-
stimulated cultured cell mRNA. S. SD, standard deviation derived from the S. int. Ratio, ratio of S. int. to C. int. Similarity, gene similarity. 



Discussion 
Extracellular signaling molecules such as cytokines, growth-

factor deprivation and DNA damage caused by chemothera-

peutic agents or irradiation activate ceramide-mediated

signal transduction pathways leading to cell death. These

pathways have been investigated in the immune system,

where they are known to have an important role, and in

neurons, as they are suspected to play a part in neurodegen-

erative disorders [1]. A number of steps in the signaling

cascades have been elucidated. However, although the

translation inhibitor cycloheximide inhibits the ceramide-

mediated death of mesencephalic neurons [7], the expres-

sion patterns of genes modulated during ceramide-mediated

cell death remain unknown. In a global approach to this

question, we have used cDNA macroarray technology to

determine the profile of gene expression in a neuronal model

of cell death, neuronally differentiated and C2-ceramide-

treated PC12 cells, in which ceramide-dependent changes in

gene expression could be isolated from the effects of other

transcription modulators.

Identification of genes closely implicated in the
ceramide and/or TNF-�� signaling pathway 
We were able to detect differential expression of 10 genes

known to be involved in the ceramide or TNF-� signaling

pathways (see Figure 4, Table 1) thus validating our study. A

summary illustration of the putative role of these genes is

presented in Figure 7. Briefly, two genes, encoding phospho-

lipase A2 group IVC (PLA2G4C) and ceroid-lipofuscinosis,

neuronal 3, juvenile (CLN3) are already known to be

involved in ceramide-mediated signal transduction. The

first, PLA2G4C, belongs to the cytosolic phospholipase A2

gene family that encodes two different proteins: calcium-

independent and calcium-dependent cytosolic phospho-

lipases [38]. TNF-� regulates the expression of PLA2G4A

mRNA in HeLa cells [39] and in human bronchial epithelial

cells [40], which is indirect evidence of modulation by

ceramide, but the role of ceramide was not demonstrated

directly in these studies. However, ceramide was shown

directly to upregulate the expression of the gene encoding

cytosolic phospholipase A2 in the fibroblast cell line L929
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Figure 5
Differentially expressed genes that encode proteins involved in the regulation of apoptosis and/or cell growth. Gray boxes, genes stimulating apoptosis
and/or growth arrest; white boxes, genes downregulating apoptosis and/or stimulating growth.
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[41]. Conversely, the activation of this gene was reported to

be necessary for ceramide accumulation and cell death in the

same cells [25]. We show for the first time that this gene is

involved in neuronal apoptosis.

The second gene, CLN3, is expressed in a variety of human

tissues including the brain, where the product is necessary

for neuronal survival [26,27]. Interestingly, CLN3 does not

inhibit C2-ceramide-induced apoptosis but modulates

endogenous ceramide synthesis and suppresses apoptosis by

preventing generation of ceramide [42]. Thus, C2-ceramide

can activate a negative feedback mechanism regulating

endogenous ceramide generation as well as activate the

downstream targets of the endogenous lipid.

Four other genes or families of genes known to be transcrip-

tionally regulated by TNF-� were also modulated by

C2-ceramide in our model (Table 1). Of these, ETS variant 5

(ETV5) belongs to the family of ETS transcription factor

genes. Increased expression of both ETS1 mRNA and the

protein has been observed in human fibroblasts after TNF-�

or IL-1� stimulation [28]. PEA3 (a mouse protein

8 Genome Biology Vol 3 No 8 Decraene et al.

Table 2

Differentially expressed genes that encode proteins involved in the regulation of apoptosis and/or cell growth 

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity Gene 
accession symbol
number

Proteins stimulating apoptosis and/or growth arrest

yg01b10 2112 R18353; Hs.286 1.68 0.17 7.95 0.55 4.74 Ribosomal protein L4 RPL4
R42557

yl73h11 567 H06473 Hs.9663 1.60 0.15 7.42 0.54 4.64 Programmed cell death 6-interacting PDCD6IP
protein

yc92h11 673 F13260; Hs.75709 2.12 0.33 9.83 0.95 4.64 Mannose-6-phosphate receptor M6PR
T77039 (cation dependent)

yg94h08 6030 R56149 Hs.78776 1.96 0.34 7.09 1.25 3.61 Putative transmembrane protein NMA

yf90d04 25970 R15366 Hs.20912 1.34 0.22 4.71 0.58 3.51 Adenomatous polyposis coli like APCL

yg76b02 3804 R51346; Hs.78935 0.95 0.18 2.89 0.40 3.03 Methionine aminopeptidase; METAP2
R51453 eIF-2-associated p67

yd01h06 9451 R39334; Hs.274348 1.98 0.16 5.89 0.66 2.97 HLA-B associated transcript-3 BAT3
T78769

c-22F12 2915 F08770 Hs.75323 1.44 0.23 3.26 0.29 2.26 Prohibitin PHB

yf69g07 115124 R14126 Hs.132955 1.82 0.30 3.99 0.96 2.19 BCL2/adenovirus E1B 19kD-interacting BNIP3L
protein 3-like

yd02b11 115910 T79985 Hs.63984 0.88 0.19 1.88 0.30 2.14 Cadherin 13, H-cadherin (heart) CDH13

c-3ke04 781 F10823; Hs.12409 1.17 0.10 ND ND 0.43 Somatostatin SST
F13223

yg64g08 115205 R35542; Hs.288986 3.01 0.41 0.90 0.15 0.30 Survival of motor neuron 1 1, telomeric SMN1
R51110

Proteins downregulating apoptosis and/or stimulating growth

yg44d03 408 R25503 Hs.155212 1.74 0.40 7.67 0.40 4.40 Methylmalonyl coenzyme A mutase MUT

yg68d10 2957 R36284; Hs.89582 1.80 0.25 7.26 0.57 4.04 Glutamate receptor, ionotropic, AMPA 2 GRIA2
R49571

yl81d04 9379 H05457; Hs.150423 2.64 0.36 8.72 1.06 3.31 Cyclin-dependent kinase 9 CDK9
H07007 (CDC2-related kinase)

yd02a11 78693 T79973 Hs.107911 2.52 0.42 5.38 0.44 2.14 ATP-binding cassette, sub-family B ABCB6
(MDR/TAP), member 6

yg51a11 17820 R21694; Hs.223014 1.09 0.24 ND ND 0.46 Antizyme inhibitor OAZIN
R46587

yh10g09 4858 R61276; Hs.8073 1.59 0.23 0.66 0.16 0.41 Septin 3 SEP3
R61277

yf53a12 3165 R12025; Hs.356245 1.14 0.21 0.29 0.02 0.25 Apoptosis regulator LOC51283
R37093

yg67b12 115951 R35827; Hs.285754 2.38 0.48 0.50 0.12 0.21 Met proto-oncogene MET
R49537

Abbreviations and column headings are as in Table 1.
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Table 3

Known genes differentially expressed in ceramide-dependent apoptosis with no identified direct interaction with the ceramide-
dependent apoptosis process

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity Gene 
accession symbol
number

Signal transduction

yl85b10 1842 H05211 Hs.22003 1.62 0.40 7.99 0.37 4.94 Solute carrier family 6 SLC6A1
(neurotransmitter transporter, GABA), 
member 1

yf77g11 3900 R14207; Hs.75819 1.12 0.12 5.02 0.43 4.46 Glycoprotein M6A GPM6A
R37490

yg63f10 1552 R26636; Hs.24212 1.01 0.15 4.02 0.61 3.98 Latrophilin KIAA0786
R49665

c-2ee07 116218 Z45003 Hs.107979 1.75 0.35 6.17 0.85 3.52 Small membrane protein 1 SMP1

yf60h11 12653 R13771 Hs.61628 1.43 0.18 4.68 0.61 3.28 Calcium binding atopy-related autoantigen 1 CBARA1

yf88a09 9668 R15201 Hs.181326 4.01 0.50 11.65 2.01 2.90 Myotubularin-related protein 2 MTMR2

yg11b08 107475 R17181; Hs.5462 0.72 0.12 1.54 0.33 2.14 Solute carrier family 4, sodium SLC4A4
R41731 bicarbonate cotransporter, member 4

c-2mh12 1997 Z41050; Hs.108787 1.08 0.21 0.52 0.04 0.47 Phosphatidylinositol glycan, class N PIGN
Z45338

yc87e10 115203 F10343; Hs.173717 1.24 0.17 0.50 0.06 0.40 Phosphatidic acid phosphatase type 2B PPAP2B
F12737

yf48c10 9043 R12286; Hs.10842 1.10 0.24 0.43 0.03 0.39 RAN, member RAS oncogene family RAN
R12797

yd09f12 2991 R39085 Hs.306359 2.39 0.46 0.90 0.22 0.38 Hect domain and RCC1 (CHC1)-like HERC1
domain (RLD) 1

c-3ie05 5307 F10685; Hs.9347 1.48 0.24 0.53 0.02 0.36 Regulator of G-protein signaling 14 RGS14
F13091

yg16c08 5294 R17962; Hs.1440 1.05 0.23 0.29 0.04 0.27 Gamma-aminobutyric acid (GABA) GABRB3
R43452 A receptor, beta 3

yf50c04 1366 R11777; Hs.5985 1.13 0.12 0.17 0.01 0.15 Non-kinase Cdc42 effector protein SPEC2 LOC56990
R37698

Transcription/translation 

yf71g02 5232 R40420 Hs.16313 0.90 0.13 2.30 0.15 2.55 Kruppel-like zinc-finger protein GLIS2 GLIS2

c-26a02 451 F07446 Hs.13993 1.64 0.38 3.39 0.73 2.07 TBP-like 1 TBPL1

c-05c07 4917 Z38284; Hs.26973 1.21 0.20 2.45 0.52 2.02 Bromodomain adjacent to zinc-finger BAZ2B
Z41997 domain, 2B

c-24a11 114423 F07382 Hs.75678 1.38 0.23 0.66 0.16 0.47 FBJ murine osteosarcoma viral FOSB
oncogene homolog B

yg90e12 10904 R56427; Hs.239 1.28 0.23 0.59 0.03 0.46 Forkhead box M1 FOXM1
R56428

yf61e03 4401 R13803; Hs.182447 7.20 1.01 2.75 0.60 0.38 Heterogeneous nuclear HNRPC
R37662 ribonucleoprotein C (C1/C2)

yf64g02 993 R37803 Hs.6151 4.87 0.77 1.87 0.46 0.38 Pumilio homolog 2 (Drosophila) PUM2

yg53f10 1678 R62465; Hs.520 1.41 0.20 ND ND 0.35 Nuclear receptor subfamily 2, NR2C2
R25720 group C, member 2

yg47e10 1548 R21283; Hs.14520 1.55 0.26 0.53 0.13 0.34 Eukaryotic translation initiation factor 2C, 1 EIF2C1
R45373

yg36d06 1872 R24568; Hs.76177 10.91 1.23 3.67 0.10 0.34 Transcription factor CP2 TFCP2
R44373

yg60b12 303 R35123; Hs.2186 3.12 0.63 0.94 0.07 0.30 Eukaryotic translation elongation EEF1G
R49511 factor 1 gamma

yg27a08 4127 R43968 Hs.278589 9.43 1.24 2.76 0.40 0.29 General transcription factor II, i, GTF2IP1
pseudogene 1
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Table 3 (continued)

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity Gene 
accession symbol
number

Cellular traffic or structure proteins

yg19f05 200119 R20424; Hs.169793 1.51 0.36 7.37 1.32 4.86 Ribosomal protein L32 RPL32
R43544

yc86h03 2760 F12918; Hs.182625 2.38 0.26 7.78 1.17 3.27 Vamp (vesicle-associated membrane VAPB
T75229 protein)-associated protein B and C

yc87f04 5084 R38549; Hs.22826 1.83 0.11 5.59 0.64 3.06 Tropomodulin 3 (ubiquitous) TMOD3
T75126

yf98g01 8512 R18713 Hs.75196 2.96 0.63 9.29 0.80 3.14 Ankyrin repeat-containing protein G9A

yh17e09 1304 R59488; Hs.30991 0.78 0.19 2.32 0.11 2.97 Ankyrin repeat domain 6 ANKRD6
R59489

yf76d11 424 R13426; Hs.119324 0.84 0.08 2.07 0.35 2.48 Kinesin-like 4 KNSL4
R40938

c-27f03 1382 F07488 Hs.89497 2.32 0.31 5.60 0.64 2.42 Lamin B1 LMNB1

yc96a12 11155 F13331; Hs.159613 4.50 0.32 10.84 2.13 2.41 Thyroid hormone receptor binding protein AIB3
T77651

yf57c11 1225 R12822; Hs.1501 0.94 0.22 2.25 0.22 2.39 Syndecan 2 SDC2
r20734

yl71a06 10804 H05894 Hs.6682 1.33 0.11 2.94 0.20 2.21 Solute carrier family 7, cationic amino SLC7A11
acid transporter, y+ system, member 11

yc99f07 11082 T78361 Hs.103042 2.21 0.07 0.98 0.19 0.44 Microtubule-associated protein 1B MAP1B

yf72e08 2558 R13080; Hs.7979 2.05 0.34 0.80 0.15 0.39 Likely ortholog of mouse synaptic SV2
R40510 vesicle glycoprotein 2a

yc87h12 2952 F10545; Hs.21611 5.68 0.59 1.93 0.17 0.34 Kinesin family member 3C KIF3C
F12946

yg54d05 604 R25813; Hs.117977 1.62 0.33 0.50 0.11 0.31 Kinesin 2 (60-70 kD) KNS2
R46810

yf91b02 1980 R16352; Hs.103042 3.50 0.41 1.01 0.24 0.29 Microtubule-associated protein 1B MAP1B
R42300

yf72a03 115963 R13048; Hs.187958 1.46 0.34 0.40 0.06 0.28 Solute carrier family 6, member 8, SLC6A8, 
R40479 accessory proteins BAP31/BAP29 DXS1357E

Immunity/inflammatory response

yg75d06 25621 R54423 Hs.179661 1.88 0.18 8.01 1.02 4.26 FK506-binding protein 1A (12 kD) FKBP1A

yg65b03 2453 R35324 Hs.9688 0.86 0.13 3.67 0.60 4.26 Leukocyte membrane antigen IRC1

yg57f05 190007 R34428 Hs.181244 3.83 0.24 9.76 1.22 2.55 MHC class I gene family

yf51e08 2563 R12005; Hs.75682 0.89 0.04 2.05 0.21 2.31 Autoantigen RCD-8
R39844

c-2bh04 190137 F03851; Hs.284394 1.13 0.07 0.56 0.07 0.50 Complement component 3 C3
F07604

yf59h02 5580 R13549; Hs.82689 1.05 0.21 0.47 0.10 0.44 Tumor rejection antigen (gp96) 1 TRA1
R20669

yc86g03 8628 F10456; Hs.302749 1.51 0.35 0.58 0.09 0.39 FK506-binding protein 9 (63 kD) FKBP9
F12856

Protein processing

yf68a10 1071 R40190; Hs.75890 0.55 0.13 2.09 0.23 3.80 Site-1 protease (subtilisin-like, sterol- S1P
regulated, cleaves sterol regulatory 
element binding proteins)

c-2na07 2001 F04230; Hs.102 1.01 0.16 0.46 0.10 0.45 Aminomethyltransferase (glycine AMT
F07978 cleavage system protein T)

yc85d05 6301 F10498; Hs.170197 1.45 0.22 0.59 0.10 0.41 Glutamic-oxaloacetic transaminase 2, GOT2
F12892 mitochondrial (aspartate aminotransferase 2)

c-2ge12 2793 Z40826; Hs.183212 1.14 0.19 0.45 0.09 0.39 Isoprenylcysteine carboxyl methyltransferase ICMT
Z46090

yg52f04 202164 R21082; Hs.235887 1.55 0.31 0.54 0.08 0.34 HMT1 (hnRNP methyltransferase, HRMT1L1
R46258 Saccharomyces cerevisiae)-like 1
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Table 3 (continued)

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity Gene 
accession symbol
number

Proteases

yf64f07 2813 R13707; Hs.171501 1.27 0.24 ND ND 0.39 Ubiquitin specific protease 11 USP11
R37801

Metabolism

yc97f08 1805 R39698; Hs.2838 2.73 0.24 9.35 0.86 3.42 Malic enzyme 3, NADP(+)-dependent, ME3
T78043 mitochondrial

yg97d06 3929 R59198; Hs.78989 0.68 0.07 1.99 0.18 2.94 Alcohol dehydrogenase 5 (class III), ADH5
R59256 chi polypeptide

c-2ca07 1549 F03858; Hs.180616 1.04 0.12 0.50 ND 0.48 CD36 antigen (collagen type I receptor, CD36L1
F07608 thrombospondin receptor)-like 1

yc95g06 3164 R39463; Hs.155247 1.01 0.20 0.31 0.05 0.30 Aldolase C, fructose-bisphosphate ALDOC
T77281

Miscellaneous

yg24g06 3097 R19249; Hs.22654 0.48 0.08 2.93 0.67 6.12 Sodium channel, voltage-gated, type I, SCNIA
R44514 alpha polypeptide

yc89d05 10816 F10796; Hs.12365 1.26 0.20 5.46 0.36 4.34 Synaptotagmin XIII SYT13
F13191

c-28e05 4334 F07514 Hs.6126 2.04 0.50 7.19 1.11 3.52 Mannosidase, beta A, lysosomal-like MANBAL

yg35g09 4463 R20330 Hs.88764 3.30 0.19 9.88 2.40 2.99 Male-specific lethal-3 (Drosophila)-like 1 MSL3L1

yg36c01 292 R24560; Hs.6430 1.50 0.22 4.40 0.78 2.93 Protein with polyglutamine repeat; ERPROT213-21
R44360 calcium (Ca2+) homeostasis 

endoplasmic reticulum protein

yc98a06 1475 R37847; Hs.301789 1.55 0.27 4.52 0.35 2.92 Capping protein (actin filament) CAPZA
T78111 muscle Z-line, alpha 1

yf54h02 924 R11969 Hs.4865 1.41 0.17 3.05 0.18 2.17 Voltage-gated sodium channel HSA243396
beta-3 subunit (scn3b gene)

yf91a04 434 R16348; Hs.12152 1.00 0.24 2.03 0.16 2.04 APMCF1 protein APMCF1
R42296

c-1ia09 4199 Z39718; Hs.8834 0.64 0.15 1.30 0.19 2.02 Ring finger protein 3 RNF3
Z43661

yg83b04 4211 R53332; Hs.7022 1.19 0.28 0.59 0.09 0.50 Dedicator of cytokinesis 3 DOCK3
R53937

yf57d02 4610 R12627; Hs.334688 1.51 0.25 0.75 0.13 0.50 Phytanoyl-CoA hydroxylase PHYHIP
R20528 interacting protein

yg36h06 3087 R24595; Hs.7122 1.08 0.13 ND ND 0.46 Scrapie responsive protein 1 SCRG1
R44400

yf99b05 2822 R18211; Hs.79284 1.07 0.21 0.48 0.07 0.45 Mesoderm specific transcript MEST
R42149 (mouse) homolog

c-24h06 92359 Z40467; Hs.171545 1.02 0.20 0.45 0.11 0.44 HIV-1 Rev binding protein HRB
Z44591

yd05d01 2346 R38832; Hs.13493 1.06 0.24 0.44 0.06 0.42 Like mouse brain protein E46 E46L
T80384

yf74e11 2106 R13277; Hs.334851 1.95 0.41 0.80 0.17 0.41 LIM and SH3 protein 1 LASP1
R40723

yd01e11 3181 T78746 Hs.168640 1.17 0.27 0.47 0.10 0.40 Homolog of mouse Ank ANK

yf48e09 414 R12292; Hs.21050 1.22 0.26 0.47 0.07 0.38 g20 protein LOC51161
R12804

yg16d07 1087 R43459; Hs.87125 9.91 2.06 3.35 0.51 0.34 EH-domain containing 3 EHD3
R17969

yf57d07 12763 R12632; Hs.109706 1.78 0.23 0.58 0.09 0.33 Hematological and neurological expressed I HN1
R20533

c-2Ia12 200991 F04056; Hs.74376 1.00 0.07 0.33 0.01 0.33 Olfactomedin related ER localized protein NOE1
F07796
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Table 3 (continued)

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity Gene 
accession symbol
number

Miscellaneous (continued)

yf61b05 1882 R13783; Hs.297743 2.04 0.16 0.63 0.12 0.31 Carbonic anhydrase X CA10
R37641

yf61a10 3960 R39112; Hs.2288 12.49 1.82 3.38 0.84 0.27 Visinin-like 1 VSNL1
R13989

yg53b12 8924 R25707; Hs.169047 2.34 0.46 0.54 0.12 0.23 Chondroitin sulfate proteoglycan 3 CSPG3
R62451 (neurocan)

Abbreviations and column headings are as in Table 1.

corresponding to ETV5) inhibits tumorigenesis in vivo [43].

Moreover, ETV5 and ETS1 can cooperate with c-Jun/c-Fos

[44,45], potential regulators of apoptosis in many cell types

and specially in the mammalian nervous system [46]. The

second gene regulated by TNF-� is NPTX2, encoding neu-

ronal pentraxin II. Pentraxins are a family of proteins that

include C-reactive protein and serum amyloid P. They have

been found in the brain plaques characteristic of Alzheimer’s

disease and are toxic to neuronal cell cultures [47,48]. Fur-

thermore, the expression of NPTX3 is increased in response

to TNF-� or IL-1� stimulation via activation of NF�B

[29,30]. The regulation of the pentraxin gene family by

C2-ceramide treatment is consistent with our previous

studies showing NF�B activation by C2-ceramide in PC12

cells and in primary cultures of neurons [10,19]. The last two

genes known to be regulated by TNF-� and identified in our

model are COL18A1, encoding type XVIII collagen alpha 1,

and TNFAIP1, encoding TNF-�-induced protein 1. These

proteins, downregulated by C2-ceramide, are modulated by

TNF-� in various cell types [31-33].

We also identified four genes encoding proteins known to

participate in TNF-�-activated signal transduction path-

ways. Thus AXL, upregulated by a factor of 3.65 (Table 1),

encodes a tyrosine kinase receptor. Signaling through

this receptor is reported to protect against TNF-�-induced

apoptosis in fibroblasts and its absence increases apoptosis

after serum deprivation [34]. Interestingly, ARK, the mouse

protein corresponding to AXL, activates the survival

pathway mediated by the serine-threonine kinase Akt [49],

which is negatively regulated by ceramide [16,17,50], and is

also reported to modulate ceramide synthesis [51]. The

second gene we identified is BIRC1, encoding baculoviral

IAP repeat-containing 1 protein. This protein, putatively

involved in spinal muscular atrophy [52], is an inhibitor of

cell death induced by various apoptotic stimuli, including

TNF-� [35]. The third identified gene, RSU1, encodes Ras

suppressor protein 1, which is involved in TNF-� signaling

by blocking the Ras-dependent response. Levels of both

RSU1 mRNA and protein have been correlated with a

decrease in growth rate and tumorigenic potential in U251

glioblastoma cells [53] and it induces growth arrest in PC12

cells [36]. This is consistent with the report that ceramide

regulates apoptosis via modulation of the Ras signaling

pathway [18]. In addition, RSU1 has been identified as an

inhibitor of Jun kinase activation [37]. This point is interest-

ing, as the fourth gene presenting in this group,

MAPK10/J.NK3, encoding the JNK family member

mitogen-activated protein kinase 10, is downregulated by

C2-ceramide in our model.

The identification of these eight genes, which are involved in

the TNF-� signaling pathway, in C2-ceramide treated PC12

cells, suggests that their modulation of expression by TNF-�

could be the result of a ceramide-dependent mechanism.

Commitment to apoptosis: upregulation of pro-
apoptotic genes and downregulation of anti-apoptotic
genes by the ceramide pathway 
Twenty genes regulated by C2-ceramide correspond to genes

known to be involved in regulation of apoptosis and/or cell

growth (Figure 5, Table 2). Twelve of these genes are known

to be associated with oncogenesis and four with neuronal

disorders. Of the upregulated genes, 10 out of 14 are known

to be associated with a pro-apoptotic or anti-proliferation

process and 3 out of 14 are mainly implicated in protection

of the cell against cytotoxicity or damage. Of the downregu-

lated genes, 4 out of 6 are associated with an anti-apoptotic

or a proliferation process. This highlights the fact that the

cells are engaged in programmed cell death. The putative

roles of these genes are illustrated in Figure 7, which focuses

on the pro-apoptotic or anti-proliferation process versus

anti-apoptotic or proliferation processes.

Briefly, of the known pro-apoptotic or anti-proliferative

genes that are upregulated in our model, RPL4 encodes the

ribosomal protein L4 that has been shown to be transcrip-

tionally stimulated prior to apoptosis induced by the

5-azacytidine in the PC12 cells [54]. PDCD6IP, upregulated

by C2-ceramide in our model, encodes a protein that inter-

acts with ALG2, a Ca2+-binding protein that is required for

apoptosis induced by diverse stimuli, including ceramide
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Table 4

Messenger RNA or protein sequences differentially expressed in ceramide-dependent apoptosis

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity
accession
number

Upregulated clones

yg51f11 229 R21710 Hs.64691 1.32 0.16 6.34 0.43 4.80 KIAA0483 protein

yg30b04 5093 R44721 Hs.12896 1.31 0.12 5.99 0.29 4.57 KIAA1034 protein

yf53g09 13 R12046 Hs.90424 1.56 0.10 7.09 0.67 4.55 Homo sapiens cDNA: FLJ23285 fis, clone HEP09071

yc94b11 223 F13362; Hs.101375 1.40 0.15 6.38 1.10 4.55 cDNA DKFZp434H205 (from clone DKFZp434H205)
T77404

yg37d06 2008 R19640 Hs.264636 1.70 0.39 7.39 1.60 4.34 KIAA0781 protein

yf75c06 425 R13300; Hs.26409 0.83 0.18 3.55 0.67 4.27 cDNA DKFZp547K204 (from clone DKFZp547K204)
R40783

yf79e07 2479 R14269; Hs.19150 0.93 0.15 3.91 0.25 4.22 cDNA DKFZp564A2164 (from clone 
R40562 DKFZp564A2164)

yf49e01 6657 R11708 Hs.21710 1.64 0.20 6.61 1.00 4.04 Hypothetical protein DKFZp761G0313

yg07h12 200578 R22668 Hs.7734 1.00 0.09 3.71 0.56 3.70 H. sapiens cDNA: FLJ21380 fis, clone COL03329

yg32e10 5469 R23681 Hs.106825 1.38 0.15 5.09 0.55 3.68 Hypothetical protein FLJ20300

yf90d07 6203 R15369; Hs.323396 1.28 0.20 4.66 0.41 3.63 Hypothetical protein RP1-317E23 (LOC56181)
R42110

yg91g03 1624 R56083; Hs272814 0.83 0.15 2.89 0.30 3.48 Chromosome 20 open reading frame 67
R56195

yg11e11 2086 R17284 Hs.106210 4.25 0.56 14.04 2.67 3.30 Hypothetical protein FLJ10813

ym11b06 6715 H11788 Hs.125034 1.98 0.16 6.52 0.85 3.29 H. sapiens cDNA FLJ10733 fis, clone NT2RP3001392

yf80c08 772 R14304; Hs.59236 1.21 0.25 3.94 0.63 3.24 Hypothetical protein DKFZp434L0718
R40254

yg18e11 4391 R20224 Hs.41185 3.49 0.86 11.27 1.23 3.23 cDNA DKFZp564O1262 (from clone 
DKFZp564O1262)

yc90h10 1343 F13218; Hs.141003 1.32 0.24 4.19 1.05 3.18 H. sapiens cDNA: FLJ21691 fis, clone COL09555
T75433

yg42a11 200671 R24764; Hs.288368 0.45 0.10 1.41 0.11 3.14 H. sapiens cDNA: FLJ21314 fis, clone COL02248
R45496

yc85f03 255 F12760; Hs.318401 3.03 0.42 9.46 0.80 3.12 HSPC039 protein (LOC51124)
T74722

yc86g12 32 F12859; Hs.180948 4.61 0.28 14.27 1.89 3.10 KIAA0729 protein
T75226

c-2lb03 1917 Z45263 Hs.155182 6.48 1.55 19.98 3.34 3.08 KIAA1036 protein

yf94d09 2836 R16328; Hs.6343; 3.16 0.48 9.58 0.97 3.03 KIAA1464 protein
R41404 HS.306400

yf49g10 2696 R11887 Hs.40094 4.42 0.68 13.38 1.70 3.03 Human DNA sequence from clone 167A19 on 
chromosome 1p32.1-33

yg67h02 1136 R35733; Hs. 325825 3.76 0.34 11.27 0.80 3.00 H. sapiens cDNA: FLJ20848 fis, clone ADKA01732
R49366

yc89d09 2388 F13194; Hs.22109 3.52 0.07 10.11 1.40 2.87 KIAA0945 protein
T75317

yf72d11 4469 R13137; Hs.6311 2.38 0.54 6.80 0.92 2.86 H. sapiens cDNA: FLJ20859 fis, clone ADKA01617
R40616

yg73c09 51540 R51740 Hs.288959 1.31 0.18 3.70 0.65 2.83 H. sapiens cDNA: FLJ20920 fis, clone ADSE00877

yf50h09 9583 R11919; Hs.11637 3.87 0.33 10.71 1.31 2.77 H. sapiens mRNA; cDNA DKFZp547J125 (from 
clone DKFZp547J125)

c-2ba02 4345 Z41723; Hs.15921 1.93 0.37 5.31 1.02 2.75 Hypothetical protein FLJ10759
Z44845

yg36f12 11000 R25011; Hs.118983 1.13 0.27 3.00 0.46 2.65 H. sapiens cDNA FLJ12150 fis, clone MAMMA1000422
R45019

c-24b10 1689 Z44563 Hs.154919 2.67 0.43 6.60 1.44 2.47 KIAA0625 protein
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Table 4 (continued)

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity
accession
number

Upregulated clones (continued)

yf76a11 1849 R13420; Hs.7822 1.12 0.09 2.73 0.33 2.43 cDNA DKFZp564C1216 (from clone 
R40930 DKFZp564C1216)

yc91c07 162 F10758; Hs.140833 0.61 0.14 1.46 0.32 2.41 H. sapiens mRNA full length insert cDNA clone 
F13156 EUROIMAGE 29222

yc94c08 4310 R38361; Hs.119004 0.53 0.05 1.25 0.22 2.36 KIAA0665 gene product
T77413

yg57f04 3072 R34427; Hs.326416 0.90 0.16 1.98 0.35 2.20 cDNA DKFZp564H1916 (from clone 
R48960 DKFZp564H1916)

yg15g12 5559 R18075; Hs.22370 0.66 0.14 1.45 0.21 2.19 cDNA DKFZp564O0122 (from clone 
R42970 DKFZp564O0122)

yg97d02 1018 R59194; Hs.5324 0.64 0.07 1.32 0.16 2.06 Hypothetical protein (CL25022)
R59252

yc95f04 3851 F13386; Hs.7888 0.58 0.07 1.16 0.25 2.02 H. sapiens clone 23736 mRNA sequence
R39459

Downregulated clones

yg42e05 4312 R45416; Hs.169330 1.05 0.23 0.52 0.05 0.49 Neuronal protein (NP25)
R25077

yg89f11 2081 R55970; Hs.16443 1.16 0.27 0.56 0.06 0.49 H. sapiens cDNA: FLJ21721 fis, clone COLF0381
R55969

yg33e09 5446 R20455; Hs.333389 1.39 0.19 0.67 0.17 0.48 Hypothetical protein MGC13090
R44158

c-2aa11 1485 Z40609; Hs.13485 1.44 0.23 0.70 0.16 0.48 KIAA1918 protein
Z44824

yf65e06 5690 R13865; Hs.301685 1.03 0.21 ND ND 0.48 KIAA0620 protein
R37007

yl76d07 37588 H05960; Hs.92418; 3.95 0.73 1.85 0.18 0.47 KIAA0141
H06010 Hs.63510

c-2cg09 201091 F03885; Hs.288361 1.06 0.10 0.49 0.02 0.47 H. sapiens cDNA: FLJ22696 fis, clone HSI11696
F07635

yg64h02 2829 R35543; Hs.12239 2.94 0.61 1.35 0.30 0.46 CGI-10 protein (LOC51004)
R51112

yf49c08 23982 R11699; Hs.322844 1.29 0.32 0.58 0.12 0.45 Hypothetical protein DKFZp564A176
R17677

yg33g08 636 R20203; Hs.7750 8.39 1.43 3.60 0.64 0.43 Novel human gene mapping to chromosome 1
R44989

yf53d08 532 R11837; Hs.246885 1.07 0.05 0.44 0.08 0.42 Hypothetical protein FLJ20783
R36955

yg65h10 10701 R35431; Hs.222746 1.04 0.25 0.42 0.09 0.40 KIAA1610 protein
R49229

yg69e11 1257 R36317; Hs.216958 1.16 0.28 0.44 0.10 0.38 KIAA0194 protein
R49249

yf79f12 5599 R14349; Hs.179946 2.55 0.37 0.86 0.20 0.34 KIAA1100 protein
R40677

yf86c11 1909 R15181; Hs.286013 1.06 0.14 0.34 0.08 0.32 Short coiled-coil protein
R41632

yf78c09 1664 R14217; Hs.351029 10.44 1.29 3.36 0.75 0.32 H. sapiens cDNA FLJ31803 fis, clone NT2RI2009101
R40635

yf61c10 1067 R13997; Hs.5008; 1.11 0.09 0.35 0.08 0.32 CG-87 protein
R39120 Hs.21515

yd06g01 2455 R38891; Hs.165570 1.41 0.07 0.45 0.10 0.32 H. sapiens clone 25052 mRNA sequence
T81283

yf64f10 111134 R36936 Hs.80285 8.72 0.83 2.76 0.35 0.32 mRNA cDNA DKFZp586C1723 (from clone 
DKFZp586C1723)
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treatment [55-57]. M6PR encodes the cation-dependent

mannose-6-phosphate receptor, which has been implicated

in retinoid-induced apoptosis [58]. NMA, encoding a puta-

tive transmembrane protein, is expressed at low levels in

metastatic human melanoma cell lines and xenografts, and

is completely absent in highly metastatic human melanoma

cell lines [59]. APCL, encoding adenomatous polyposis coli

like protein, is a tumor-suppressor gene [60]. METAP2

encodes methionine aminopeptidase eIF-2-associated p67,

which interacts with eukaryotic translation initiation factor

eIF-2 [61] and could regulate p53 signaling [62]. BAT3,

downregulated in some transformed cells, encodes HLA-B

associated transcript-3, which interacts with the tumor-

suppressor protein DAN that contains growth or tumor sup-

pressive activity in vitro [63]. PHB encodes the protein

prohibitin, a potential tumor-suppressor protein that

binds to the retinoblastoma (Rb) protein and represses E2F

transcriptional activity [64,65]. BNIP3L, encoding

BCL2/adenovirus E1B 19kD-interacting protein 3-like, is a

pro-apoptotic gene which has a growth-inhibitory effect on

cancer cells [66]. CDH13, encoding cadherin 13, is signifi-

cantly downregulated in human breast carcinoma cell lines

and breast cancer, whereas its overexpression decreases

tumor-cell growth [67,68]. 

Of the known anti-apoptotic or proliferative genes that are

downregulated in our model, LOC51582 encodes an

antizyme inhibitor, which regulates the antizyme activity

proposed to be involved in the polyamine biosynthesis

pathway [69,70]. Interestingly, overexpression of antizyme

inhibits cell growth [71,72], whereas LOC51582 is downregu-

lated in our model. This observation is consistent with a role

of antizyme in the apoptotic process and suggests that

ceramide can regulate its activity. LOC51283, a regulator of

the activity of the Bcl-2 family proteins, encodes a novel

apoptosis regulator, which has been identified as an

inhibitor of Bax-induced cell death [73]. Its downregulation

by C2-ceramide confirms its involvement in the ceramide-

dependent regulation of cell death. The last gene presented

here, MET, encodes the MET proto-oncogene, known to be a

receptor of the hepatocyte growth factor that has been

described to protect neuronal cells from apoptosis via the

phosphatidylinositol-3 kinase/Akt pathway [74].

Four genes out of the other genes presented in Table 2 have

already been implicated in neuronal disorders, suggesting

that ceramide may be a key second messenger in these

pathologies. The upregulation of the glutamate receptor

gene (GRIA2) seems to be an indicator of tolerance to

ischemia [75]. The absence of somatostatin, encoded by SST

(downregulated in our model), is associated with apoptotic

neurons in patients with Alzheimer’s disease [76]. SMN,

encoding Survival of motor neuron 2, downregulated by

C2-ceramide, strongly contributes to the severity of the

spinal muscular atrophy [77]. MUT mRNA is upregulated in

ischemia, in relation to a decrease in the accumulation of its

neurotoxic metabolite [78].

In conclusion, our cell culture model has enabled us to

establish a profile of gene expression during the effector

phase of ceramide-mediated cell death. In spite of the strin-

gency of the criteria adopted for differential hybridization, a

large number of cDNA clones, 239 of the 9,120 in our

cDNA array derived from a normalized infant brain library,

Table 4 (continued)

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity
accession
number

Downregulated clones (continued)

yc91e03 11140 F13018; Hs.337629 5.27 1.08 1.67 0.22 0.32 cDNA DKFZp434D115 (from clone DKFZp434D115)
T77597

yf65b02 8918 R13839; Hs.227913 1.09 0.24 0.32 0.05 0.30 API5-like 1
R36985

yf60a03 1485 R13618; Hs.13485 2.13 0.36 0.65 0.09 0.30 KIAA1918 protein
R38474

yf56a05 5140 R12419 Hs.7132 1.97 0.33 0.57 0.08 0.29 KIAA0574 protein

yg78h08 884 R51917; Hs.6449 1.20 0.28 0.34 0.08 0.28 CGI-87 protein (LOC51112)
R54309

yf69g12 713 R40161 Hs.288776 1.21 0.23 0.29 0.04 0.24 H. sapiens cDNA: FLJ21304 fis, clone COL02111

yf93b11 2192 R16295; Hs.108504 1.25 0.16 0.24 0.05 0.20 Hypothetical protein FLJ20113
R40219

yf51g08 2572 R12017; Hs.20977 1.11 0.20 0.19 0.04 0.17 Human DNA sequence from clone RP5-881L22 on 
R39856 chromosome 20

yg26c11 904 R19006; Hs.226396 3.13 0.50 0.35 0.08 0.11 Hypothetical protein FLJ11126
R44076

Abbreviations and column headings are as in Table 1.
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Table 5

Unknown genes differentially expressed in ceramide-dependent apoptosis

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity
accession 
number

Upregulated clones

yf66a04 17755 R18781 1.04 0.24 5.19 0.59 4.98 ESTs

yf88d07 3024 R15141; R41563 Hs.12381 1.21 0.09 5.83 0.85 4.80 ESTs

yc85h07 11132 F12902; T74741 1.38 0.16 5.75 0.53 4.16 ESTs

yg38a10 2564 R19870; R45098 Hs.182503 1.32 0.23 5.46 0.63 4.15 ESTs

c-25h01 1301 Z44625 Hs.29672 4.51 0.68 18.31 3.99 4.06 ESTs

yg53c11 5862 R25710; R62454 1.83 0.19 7.36 0.59 4.02 ESTs

yg02a02 5691 R18381; R42444 Hs.240816 1.52 0.23 6.08 0.94 4.00 ESTs

yh09g12 4411 R61781; R61782 1.20 0.30 4.55 0.24 3.78 ESTs

yf80c09 943 R14362 2.24 0.32 8.34 0.16 3.73 ESTs

yd02e05 761 R39357; T80134 Hs.306425; Hs.327350 1.20 0.19 4.47 0.73 3.72 ESTs

yg17c05 5291 R18746; R43067 Hs.238956 1.09 0.11 3.79 0.39 3.48 ESTs

c-2ef12 1659 F07687 3.08 0.02 10.53 2.42 3.42 ESTs

yf58e03 1072 R12737; R39789 Hs.119714 3.06 0.60 10.30 0.39 3.36 ESTs

yl69a01 160 H00104 Hs.21417 3.24 0.54 10.72 1.23 3.31 ESTs

yc93d09 438 T77119 Hs.21417 2.08 0.45 6.77 1.60 3.25 ESTs

c-28f03 1425 F07517; Z40576 2.49 0.35 7.77 0.52 3.12 ESTs

yg60e11 2509 R35134 4.12 0.92 12.87 1.02 3.12 ESTs

yl96g09 11047 H09060 2.97 0.51 9.23 1.00 3.11 ESTs

yg02f03 2758 R18419 HS.18585 3.51 0.62 10.83 1.03 3.09 ESTs

yf94d10 11844 R16329; R41405 Hs.197143 2.73 0.46 8.41 1.14 3.08 ESTs

yf63f02 201117 R13594 Hs.155639 1.92 0.25 5.75 0.77 3.00 ESTs

yf98b09 16058 R18177; R42241 Hs.106359 1.07 0.24 3.17 0.27 2.95 ESTs

yf80c07 1885 R14303 Hs.32565 0.76 0.04 2.18 0.33 2.85 ESTs

yc92a01 11141 F13028; T76925 4.87 0.12 13.72 2.61 2.82 ESTs

yf76a02 711 R13339 Hs.7913 5.21 0.78 14.52 3.06 2.79 ESTs

yf55h04 664 R12357 3.64 0.18 9.99 1.24 2.75 ESTs

yc85h06 11131 F12901; T74740 5.20 0.54 14.15 2.43 2.72 ESTs

yc88c03 10642 F12878; R38624 Hs.106313 1.50 0.30 4.04 0.70 2.70 ESTs

yg39a10 10317 R19899; R45120 Hs.89388 4.91 0.67 12.91 2.40 2.63 ESTs

yh15d09 6818 R61465 4.60 0.37 11.88 1.21 2.58 ESTs

yg02g01 1987 R18425; R42486 Hs.4983 1.11 0.27 2.75 0.51 2.47 ESTs

yg08h03 201114 R22721; R43427 Hs.244482 0.70 0.17 1.60 0.08 2.28 ESTs, moderately similar to 
alternatively spliced product
using exon 13A (H. sapiens)

yg33b02 4208 R20161; R44947 Hs.22905 0.91 0.19 2.05 0.17 2.26 ESTs

yg44c04 3106 R25497; R45563 None 1.11 0.27 2.60 0.50 2.33 ESTs

yg46g12 5388 R20696; R45358 Hs.311444; Hs.6591 0.90 0.17 1.95 0.48 2.16 ESTs

yg42a06 2573 R25050; R45389 Hs.23558 0.57 0.14 1.22 0.22 2.13 ESTs

yf63f11 5521 R36919 Hs.25205 0.99 0.14 2.11 0.19 2.13 ESTs

Downregulated clones

c-2eg10 1662 F03955; F07692 1.04 0.19 0.51 0.08 0.49 ESTs

c-29f04 201571 Z40598; Z44804 Hs.184780 1.06 0.15 0.52 0.11 0.49 ESTs

c-2la08 1913 Z40977; Z45261 Hs.125266 1.03 0.22 ND ND 0.49 ESTs

c-2ch10 3050 F03889; F07637 Hs.27278 2.42 0.49 1.12 0.24 0.46 ESTs, weakly similar to chain A,
cyclophilin A complexed with 
cyclosporin A (H. sapiens)



correspond to genes up- or downregulated by C2-ceramide

treatment. Already-known genes account for 179 of the tran-

scripts, 113 of which have a putative function.

On the basis of their putative functions, we have made an

attempt at classifying these transcripts, first with respect to

known effects of ceramide or ceramide-mediated transduc-

tion systems, then with respect to regulation of cell growth

and apoptosis. The 30 genes in Tables 1 and 2 met these cri-

teria, validating the approach and suggesting that the other

modulated genes may also be relevant with regard to the

progression of the cell-death mechanisms. These genes were

classified as having no obvious relation to cell death or sur-

vival (Table 3), no known function (Table 4) or as poorly

characterized (Table 5). As a result of our study, these genes

now have tentative functions. The full list can be consulted

with the relevant data on the dedicated website [24].

Interestingly, given the large number of genes known to be

modulated by NF�B in the immune system [79], it was sur-

prising that only pentraxin was detected in our model. This

suggests either that NF�B is less important in neurons than

in lymphocytes, or that its targets are different. Conversely,

the transcriptional regulators responsible for the differential

expression of the genes detected in our study remain to be

discovered. In any case, our results show that transcriptional

regulation plays an important role in ceramide-mediated cell

death and that some of the modulated transcripts, in agree-

ment with published studies, are involved in other cell-death

mechanisms as well.

Materials and methods 
Cell culture 
Rat PC12 cells [80], which acquire a neuronal phenotype in

the presence of nerve growth factor (NGF), were plated at a

density of 2,000-3,000 cells/cm2 in 75 cm2 culture flasks

coated with polyethylenimine (1 mg/ml) in Leibovitz modified

L15 medium (Gibco BRL) supplemented with 2% horse serum

and 150 ng/ml NGF (grade II; Alomone Labs, Jerusalem,
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Table 5

Unknown genes differentially expressed in ceramide-dependent apoptosis

Clone ID GENX GenBank Unigene C. int. C. SD S. int. S. SD Ratio Similarity
accession 
number

Downregulated clones (continued)

yg83b05 20476 R53938; R53333 1.27 0.10 0.56 0.13 0.44 ESTs

yg36f04 5214 R24580 Hs.27104 2.18 0.53 0.95 0.17 0.43 ESTs

yf60a12 3065 R38592; R13746 6.52 1.15 2.61 0.42 0.40 ESTs

yc86e07 2935 F10326; F12716 Hs.227993 7.76 0.94 3.02 0.59 0.39 ESTs

yc90f10 10752 F10679; F13085 Hs.12395 1.12 0.20 0.43 0.08 0.38 ESTs

yc97e12 4395 T78036 Hs.23213 1.11 0.20 0.41 0.05 0.37 ESTs

yf50h10 477 R11920; R39108 Hs.6777 2.39 0.56 0.82 0.16 0.34 ESTs

yf74a06 16024 R13206; R40294 1.32 0.28 0.45 0.10 0.34 ESTs

yg96d11 3143 R59141; R59142 1.30 0.19 0.43 0.08 0.33 ESTs

yf51a04 958 R11976; R39818 Hs.4241 1.25 0.23 0.40 0.09 0.32 ESTs

yg51e05 5025 R46483; R21387 Hs.23187 6.26 0.92 1.98 0.19 0.32 ESTs

yg02h09 2969 R17514; R42608 Hs.139270 10.09 0.93 3.19 0.46 0.32 ESTs

yf66f03 978 R37086 Hs.23210 1.72 0.18 ND ND 0.29 ESTs

yf67b06 115094 R18860 Hs.203213 1.72 0.28 ND ND 0.29 ESTs

yl91f12 4185 H08130; H08131 Hs.19515 2.86 0.33 0.70 0.17 0.25 ESTs

yg14a03 2782 R17432; R42778 Hs.22217 1.57 0.27 0.34 0.06 0.22 ESTs

yf52e12 4147 R12228; R39947 Hs.7237 1.57 0.30 0.34 0.06 0.22 ESTs

yf50g11 1829 R11917; R39107 Hs.352354; Hs.244624 2.37 0.24 0.48 0.10 0.20 ESTs

yf84f08 2237 R14545; R41206 Hs.349648 1.06 0.17 0.19 0.03 0.18 ESTs, weakly similar to 
KIAA1157 protein (H. sapiens)

Abbreviations and column headings are as in Table 1.



Israel) as previously described [81]. Apoptosis was induced,

after 6 days in the presence of NGF, with the cell-permeant C2

analog of ceramide (C2-ceramide), N-acetylsphingosine

(Biomol Research Laboratories, Plymouth Meeting, PA), at a

concentration of 25 �M. As negative control, an inactive C2

analog of ceramide (C2-dihydroceramide), N-acetylsphinga-

nine (Biomol Research Laboratories), was used in the same

condition as C2-ceramide.

Morphological characterization of apoptosis and
cell counts
Neurite retraction and cell shrinkage were visualized by

phase-contrast microscopy. Condensed and fragmented

nuclei were made visible in situ as described in [7], by inter-

calation into nuclear DNA of the fluorescent probe propid-

ium iodide. Propidium iodide, which only enters dead cells

that have become permeable, was visualized by epifluores-

cence with a rhodamine filter (excitation, 548-580 nm;

emission, 580-610 nm). Viability was quantified by counting

cells in at least 10 randomly chosen fields with a 20x objec-

tive. The percentage of cells excluding the vital dye propid-

ium iodide was calculated at each time point after the

beginning of C2-ceramide or C2-dihydroceramide treatment

with respect to the corresponding control.

Measurement of caspase-3-like activity 
Caspase-3-like activity was measured using the CaspACE

Assay system (Promega, Madison, WI). Cell extracts con-

taining equivalent amounts of protein were used to measure

DEVDase (caspase-3-like) activity: the chromophore

p-nitroaniline (pNA), released from the colorimetric sub-

strate (Ac-DEVD-pNA) upon cleavage by DEVDase produces

a yellow color that is monitored by a photometer at 405 nm.

Preparation of the cDNA macroarray 
cDNA clones from a normalized infant brain library (library

1NIB; [20]) were randomly selected to provide a set of 9,120

cDNA clones. The 3´ and/or 5´ ends of these clones had

been previously sequenced [25]. The sequences, registered

in GenBank [82], were compared to those in public data

bases, permitting tentative identification of the correspond-

ing gene transcripts. The cDNA clones were used to prepare

PCR products using oligonucleotide primers complementary

to sequences in the vector. They were spotted by robot

(Flexis; Perkin Elmer, Shelton, CT) at medium density (25

PCR products/cm2) on nylon membranes (Hybond-N+;

Amersham Biosciences, Uppsala, Sweden) as previously

described [83]. The entire collection of 9,120 cDNA clones

was spotted on a set of four filters.

18 Genome Biology Vol 3 No 8 Decraene et al.

Figure 6
Confirmation of macroarray results by RT-PCR and northern blotting. The percentage of signal modulation (PCR amplification signal or hybridization
signal) in relation to control cells (without C2-ceramide treatment) has been calculated in each condition to compare the expression of each gene in
neuronally differentiated PC12 cells with (black boxes) or without (white boxes) C2-ceramide treatment. The PCR amplification signal and the
hybridization signal for the positive controls (HPRT and 18S rRNA genes, respectively) are indicated.
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Figure 7
Schematic illustrating the putative roles of the proteins encoded by the genes noted in Figures 4 and 5.
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Purification of poly(A)+ mRNA 
Total RNA was extracted from control PC12 cultures and

from PC12 cultures treated with C2-ceramide or C2-dihydro-

ceramide (approximately 106 cells) with the RNeasy midi kit

(Qiagen, Courtaboeuf, France), according to the manufac-

turer’s instructions. The integrity of the RNA was confirmed

by agarose gel electrophoresis. Poly(A)+ mRNA was

extracted from total RNA with oligo(dT)-conjugated mag-

netic beads (Dynabeads; Dynal, Oslo, Norway), as described

in the manufacturer’s protocols.

Complex cDNA target synthesis 
Complex cDNA targets were synthesised by reverse tran-

scription of 500 ng poly(A)+ mRNA extracted from control,

C2-dihydroceramide- or C2-ceramide-treated PC12 cells. The

reaction was performed with the SuperScriptTM Preamplifi-

cation System (Invitrogen) as previously described [84]. The

reaction mixture contained random-oligonucleotide primers

(500 ng), 50 �Ci [�-33P]dATP, 3,000 Ci/mmol (Amersham),

500 �M d(T, C, G)TP (Amersham) and 50 �M dideoxyGTP

(Invitrogen).

Filter hybridization 
The filters were prehybridized at 68°C for 30 min in

ExpressHyb hybridization solution (Clontech, Palo Alto,

CA), hybridized for 2 h in the same solution to which the

radiolabeled complex cDNA target was added, then washed

twice for 30 min at 25°C in standard saline citrate (SSC)

1x/0.1% sodium dodecyl sulfate (SDS) and twice for 30 min

at 25°C in SSC 0.1x/0.1% SDS. The washed filters were

exposed to phosphorus screens (Molecular Dynamics, Sun-

nyvlae, CA) for 16 h. 

Hybridization signal quantitation 
Image acquisition was carried out with the PhosphorImager

(Molecular Dynamics). The hybridization signal correspond-

ing to each cDNA clone was quantitated with a specifically

designed software (XdotsReader; Cose, Dugny, France) and

the local background signal was subtracted. The intensity of

the hybridization signal for each clone was then divided by

the average intensity of all the clones on each filter to obtain

normalized values. Hybridization was done in quadruplicate

so that, for each clone/target combination, four values were

obtained, compared and validated if at least three out of the

four values were similar (SD ± 25%). The final value assigned

to each clone was the average of the validated values.

Northern blotting 
Total RNA (20 �g) were fractionated under denaturing condi-

tions in a 1.2% agarose gel and transferred onto a Hybond-N+

membrane (Amersham). Specific probes were generated

from cDNA clones of interest by PCR using vector-specific

primers. The PCR products were purified using the microcon

kit (Amicon, Wageningen, The Netherlands) and radio-

labeled by random priming (Gibco BRL). Oligonucleotides

corresponding to 18S rRNA (control probe) were 32P-labeled

using [�-33P]ATP and T4 RNA kinase. For northern blot

analysis, the blots were prehybridized 2 h in ULTRAhyb

hybridization buffer (Ambion, Austin, TX), hybridized with

the labelled probe (1-2 x 106 cpm/ml) for 16 h at 42°C in the

same solution, and washed as for the high-density filters.

The washed filters were exposed to phosphorus screens

(Molecular Dynamics) for 48 h. The hybridization signal of

the specific probes was analyzed with the ImageQuant soft-

ware (Molecular Dynamics) and compared to the signal

obtained with the control probe.

RT-PCR 
Total RNA of PC12 cells cultured with or without C2-

ceramide was purified according to the protocol described

above. Total RNA (2 �g) were reverse transcribed using the

SuperScriptTM Preamplification System (Invitrogen) accord-

ing to the manufacturer’s protocol. An aliquot of the reaction

was then used for PCR amplification with the Advantage

PCR kit (Clontech) and primers specific to the gene of inter-

est. The amplification products were visualized after elec-

trophoresis in a 1.5% agarose gel with ethidium bromide.

The signals were analyzed with ImageQuant software and

compared to HPRT (hypoxanthine phosphoribosyl trans-

ferase) as control gene.
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