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Abstract

The vasa gene, essential for germ-cell development, was originally identified in Drosophila, and has since
been found in other invertebrates and vertebrates. Analysis of these vasa homologs has revealed a
highly conserved role for Vasa protein among different organisms, as well as some important

differences in its regulation.

Germ-cell development in vertebrates and
invertebrates

In sexually reproducing organisms, primordial germ cells
(PGCs) give rise to gametes that are responsible for the
development of a new organism in the next generation.
These cells must remain totipotent - able to differentiate into
each and every cell type of all the different organs. In many
organisms, maintenance of totipotency is achieved by the
specification of germ cells early in embryogenesis: a small
group of cells is set aside to follow a unique pathway of dif-
ferentiation into gametes (reviewed in [1-3]).

Information on the specification of PGCs has been gained
from detailed microscopical analysis, embryological experi-
ments (for example transplantation of cells or cytoplasm) and
gene identification through genetic screens for maternal-effect
mutations in Drosophila and Caenorhabditis elegans
(reviewed in [1-4]). The main conclusion from these two inver-
tebrate model organisms is that asymmetrical localization of
cytoplasmic determinants - the germ plasm - is responsible for
the early specification of the germline lineage. The importance
of localized cytoplasmic determinants for germ-cell develop-
ment has been most clearly shown in Drosophila. Here, for
example, cytoplasmic germ plasm determinants concentrated
at the posterior pole of the embryo in ‘pole plasm’ can direct
cells towards a germ-cell fate when transplanted to an ectopic

location. In mutants in which the formation of this morpho-
logically characteristic cytoplasm is disrupted, germ-cell for-
mation is impaired (reviewed in [5]). The pole plasm is
characterized by the presence of the polar granules, electron-
dense structures not delimited by a membrane that contain
many RNAs and proteins and that are associated with mito-
chondria. The distribution of the pole plasm correlates with
the site of PGC formation. On the basis of their unique mor-
phology, germ plasm components have also been identified in
other organisms such as C. elegans (where they are termed P
granules), Xenopus laevis (germinal granules), chick and
zebrafish [1-3,6-9].

The specification of the germline is different in mammals.
Several lines of evidence argue that here inherited cytoplas-
mic factors do not have a role in germ-cell specification, but
that germ cells are induced through cellular interactions
during gastrulation (reviewed in [1-3]). Morphologically dis-
tinct germ plasm has not so far been identified in early mam-
malian embryos. In addition, mouse eggs from which the
animal or vegetal pole was experimentally removed devel-
oped into fertile mice, arguing against any polarity in the egg
that is functionally important for germ-cell specification [10].
Mouse germ cells arise just before and during early gastrula-
tion, around the proximal part of the epiblast adjacent to the
extra-embryonic  region. Transplantation experiments
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Table | (continued)

Function References

RNA localization Protein expression Protein localization

Gene RNA expression

Species

ND ND 27]

ND

Early embryos: posterior during

Ci-DEAD|  Embryo: mesenchymal cells and

Ascidian

two- to four-cell stage, inherited by

presumed germ cells.

posterior cells presumed to be germ

cells. Ovary: early oogonic cells.

(Ciona intestinalis)

Testis: early spermatogenic cells.

[28,45]

Glh-1 glh-2 and glh-4

All localized to P-granules that

All expressed throughout life, first

No

glh-1, glh-2, glh-3 and glh-4 expressed
in all cells of early cleavage stages

gh-I

Nematode

products are required for

segregate to germline blastomeres.

in germline blastomeres and later in

germ cells in gonad

gth-2

(Caenorhabditis

elegans)

germ-cell proliferation and

Granules are cytoplasmic in oocyte

followed by a decrease to background

gh-3

gametogenesis. Oogenesis and

spermatogenesis defective in

and early embryo and perinuclear at

later stages.

levels. All expressed in germline cells in

male and hermaphrodite.

ghh-4

glh-174(RNAi), with many cells

not proceeding beyond pachytene.

[30]

ND: hereditary infertility

Testis: granular staining in

Germ cells: expressed in PGCs as

ND

In the fetus and adult, gonad-specific

expression in both sexes.

VASA

Human

spermatocytes. Ovary: in fetal oocytes: syndromes that map to the

within a compact perinuclear body.

In adult oocytes no subcellular

localization.

they populate the gonadal ridge as

(Homo sapiens)

chromosomal region of VASA

have not yet been found.

well as in PGCs that have not yet

reached this target. Testis:

spermatogonia, spermatocysts and
spermatids. Ovary: oocytes.

*Not all the known vasa homologs are listed in the table. Homologs for which little functional information is available have been omitted unless they shed light on the function of the gene in a certain class of organism. ND, not determined.
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showed that, at these stages, these cells are not yet committed
to the germline, and when grafted into distal positions they
can develop into somatic tissues [1,2]. Consistent with the
notion of germ-cell induction through cell-cell interactions,
distal cells that would develop as somatic cells can develop
into germ cells when grafted into the region where germ cells
normally form [1,2]. Indeed, formation of the founding popu-
lation of PGCs in the mouse was shown to depend on the
function of at least one extracellular factor - bone mor-
phogentic protein 4 (Bmp4) [3].

Some of the methodologies used in the invertebrate models
cannot be applied to vertebrates. In particular, the maternal-
effect screens that were instrumental in analyzing the speci-
fication of PGCs in invertebrates are not practicable in the
frog, chick or mouse. Fortunately, such screens can be
carried out in the zebrafish [11], although in this system too,
it would be very difficult to achieve saturation for all mater-
nal-effect mutations involved in PGC specification using
classical ‘forward’ genetic analysis.

Homologs of vasa in invertebrates and
vertebrates

The vasa gene was originally identified in Drosophila as a
maternal-effect gene required for the formation of the
abdominal segments and for germ-cell specification [12]. The
Vasa protein can be detected in the germline cells of
Drosophila throughout their development and in early
embryos it is specifically localized to polar granules, which
are located where the germ cells are specified. Drosophila
embryos that inherit mutant maternal vasa RNA and protein
fail to form germ cells, and females carrying null mutations in
vasa display a range of defects in oogenesis. The vasa gene
encodes an ATP-dependent RNA helicase of the DEAD-box
family and is required for promoting translation of at least
two known mRNAs, nanos and gurken [13-19].

Following the isolation of the Drosophila vasa gene, vasa-like
DEAD-box RNA helicase genes that are expressed in germ
cells were identified in many species, including mouse, rat,
frog, zebrafish, medaka (Oryzias latipes), trout, planarian,
chick, ascidian, nematode, silkworm, human and the flour
beetle (Table 1; [8,20-30], and R. Schréder and D. Tautz, per-
sonal communication). The distribution of vasa RNA or
protein was determined during different stages of develop-
ment, thus providing information on the possible function of
vasa during germ-cell development in these species. The vasa
loss-of-function phenotype in the fly, the mouse and the
nematode provided direct evidence for the role of vasa in the
development of germ cells in these organisms. And in cases
where the origin and precise route of germ-cell migration
towards the gonad were unknown (for example in fish, chick
and ascidians), it proved possible, using vasa as a molecular
marker, to trace back the migration path and establish the
position in which these cells originate [8,23,27,31].
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Regulation of expression and subcellular
localization of vasa-like gene products

As can be seen from Table 1, vasa RNA is expressed in the
germ cells of many organisms. But translational control, post-
translational control and subcellular localization of the Vasa
protein, as well as interaction with other proteins, appear to
play a major part in controlling Vasa function. For example,
vasa RNA is uniformly distributed in early Drosophila
embryos but, consistent with its function, the protein is found
localized to the posterior pole, where it is associated with the
polar granules in the germ plasm. Similar discrepancies
between RNA and protein expression, in which the Vasa
protein is found in a restricted number of cells relative to the
RNA and is localized to specific subcellular structures, have
also been described in Xenopus and the nematode.

A recent thorough analysis of the distribution of the vasa
gene products in zebrafish revealed a unique and surprising
difference between the localization of RNA and that of the
protein [9]. The RNA is localized through a microtubule-
dependent process in a novel pattern to the first and second
cleavage planes of the early zebrafish embryo [23,32]. Knaut
et al. [9] also showed that the vasa RNA aggregates reside
within an electron-dense matrix similar to structures associ-
ated with germ plasm in other organisms. The localization of
vasa RNA to the germ plasm allowed them to follow pre-
cisely the distribution of the germ plasm to the cells of the
early embryo [9]. Until late blastula stages, the four cells that
contain germ plasm divide asymmetrically, so that only one
of the blastomeres resulting from each division inherits the
germ plasm labeled by vasa RNA; these will become the
future PGCs. Towards the end of the blastula stage, the RNA
fills the cytoplasm of the vasa-positive cells and is inherited
by both daughter cells after cell division. The distribution of
the Vasa protein at these early stages of development dif-
fered from that of the RNA in a striking and unexpected
manner. When the vasa RNA is asymmetrically segregating
to the future PGCs, the Vasa protein is uniformly distributed
in the cytoplasm of all blastomeres. This initial pattern of
protein expression changes at late blastula stages, when
stronger protein expression is detected in the germ cells,
which now divide symmetrically. At this time, the distribu-
tion of the protein within the cells becomes perinuclear.

Given that Vasa protein is implicated in establishing func-
tional germ plasm and in the specification of germ cells in
other organisms, the findings in zebrafish seem paradoxical.
In Drosophila, for example, loss-of-function mutations in
vasa that affect the formation of the pole plasm were shown
to affect either the biochemical activity of the protein or its
localization [19]. In zebrafish, on the other hand, the vasa
RNA, rather than the protein, is initially localized to the
germ plasm. There are several possible explanations for this
paradox. One is that in zebrafish it is the vasa RNA and not
the protein that is important for the early determination of
germ plasm. It is important to note, however, that in

zebrafish, vasa RNA expressed ectopically during embryoge-
nesis is unable by itself to alter the number or position of the
PGCs [31]. Furthermore, cloning of the medaka wvasa
homolog and analysis of its expression pattern showed that
in this fish, which like the zebrafish is also a teleost, the RNA
is uniformly expressed until gastrulation, when germ-cell-
specific expression is observed [24].

Another possible explanation of the paradox is that although
most of the Vasa protein is uniformly distributed in all cells, it
is active only in the germ cells, as a result of cell-specific post-
translational modifications. Vasa activity can indeed be
affected by post-translational modification, as described
during oogenesis in Drosophila [33]. Finally, there could be a
higher concentration of Vasa protein in germ cells as a result
of translation of the maternally localized RNA. In this sce-
nario, localization of vasa RNA, and presumably other RNAs,
important for germ-cell determination, generates high levels
of these proteins in some cells, thereby inducing the zygotic
PGC differentiation path. An interesting recent discovery was
recently made by Schroder and Tautz, who cloned a vasa-like
gene from the ‘short germ band’ beetle, whose embryogenesis
represents a more ancestral form of embryogenesis in insects.
Tribolium castaneum (R. Schréder and D. Tautz, personal
communication). They found that the distribution of vasa
RNA in this insect is more reminiscent of that in zebrafish
rather than the ‘long germ band’ Drosophila. After early
uniform distribution of the RNA, the Tribolium vasa RNA
appears to be located exclusively at the posterior of the early
embryo, where the germ cells presumably form.

The function of vasa in germ-cell development
The function of the vasa gene can be inferred from its
expression pattern in different organisms and from pheno-
typic analysis of animals lacking a functional gene. With the
exception of the mouse (and probably other mammals), the
vasa gene product is expressed in or localized to the PGCs
very early in development, consistent with the idea that its
activity is required for specification of this cell lineage. Inter-
estingly, in planarians, where a wvasa homolog is also
expressed in the soma, the somatic cells that express the
gene were identified as neoblasts - a totipotent cell type that
functions in regeneration. The function of vasa could there-
fore be described as important for preserving totipotency.
One mechanism for preserving totipotency is to inhibit
expression of genes that would lead to somatic differentia-
tion [34]. An indirect role for vasa in transcriptional inhibi-
tion is suggested by the finding that one of the few known
targets of Vasa, nanos, can repress gene expression in the
Drosophila germline [15,35,36].

In the mouse, where germ cells are induced through cellular
interactions rather than by inheritance of maternal cytoplas-
mic determinants, the expression of vasa is initiated rela-
tively late [20,37]. Vasa is expressed in the PGCs as they



arrive at the gonad, and expression is induced by interaction
between the germ cells and the somatic cells of the develop-
ing gonad [37]. The expression of vasa at this stage in the
mouse, as well as in all the other organisms described above,
is likely to reflect a requirement for the gene product for dif-
ferentiation of the germ cells into gametes. Indeed, loss of
vasa function in the mouse affects differentiation of the
male germ cells, resulting in male sterility (no other pheno-
type is observed in the knockout mice) [38]. Similarly, a late
function of vasa during gametogenesis has been described in
the nematode and the fly [16,17,28,33]. The first mechanistic
evidence coupling progression in gamete differentiation and
vasa function is the demonstration that a meiotic checkpoint
during oogenesis in Drosophila appears to control the activ-
ity of the Vasa protein [33].

The search for new factors involved in germ-cell
development

To gain a more comprehensive understanding of germline
development in different species, one would obviously seek to
identify most or all of the components relevant to the process
and determine the functional relationships between them.
Genome sequencing and the availability of expressed
sequence tag (EST) libraries now allow us to identify
homologs through database screens of different organisms.
Isolation of new genes essential for germ-cell development is
more demanding. Classical genetic analyses in invertebrates
and in zebrafish are likely to identify new genes and proteins.
This approach will fail, however, where there is functional
redundancy among genes or when a zygotic requirement for
the gene complicates the analysis of its function as a maternal
factor. By using DNA microarray chips and tissue-specific
probes, on the other hand, one could identify genes that are
specifically expressed in the germ cells. The yeast two-hybrid
system can be used to reveal new proteins that physically
interact with previously identified gene products (see [19]).
In addition, screening cDNA libraries by in situ hybridization
can identify new genes even if they are expressed in other cell
types as well as in germ cells. This approach has led to identi-
fication of many homologs of known genes in the zebrafish,
as well as of new genes and proteins that are expressed in the
germline (C. Thisse, B. Thisse and E.R., unpublished observa-
tions). Functional analysis of zebrafish genes isolated by such
‘reverse’ genetics approaches can be carried out using mor-
pholino antisense oligonucleotides [39], which inhibit trans-
lation of their specific mRNAs in this organism (S. Ekker,
personal communication).

The approaches described above are most useful in model
organisms for which investment in genomic resources has
provided the necessary tools. Nevertheless, other species
such as planarian, flour beetle, silkworm and medaka
display interesting parallels as well as important differences
in the way the vasa gene is expressed and regulated. Contin-
uing and expanding the work in different model systems is

http://genomebiology.com/2000/1/3/reviews/1017.5

likely to contribute to our understanding of the molecular
mechanisms of specification and differentiation of the germ
cells across the animal kingdom.
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