Skip to main content
Fig. 8 | Genome Biology

Fig. 8

From: The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading

Fig. 8

Effects of ERβ and AGO2 on gene transcription rate and nascent RNA splicing. a Western blots showing the extent of AGO2 knock-down by shRNA in Ct-ERβ cells. ACTB β-actin, NT nontransfected cells, shCTRL cells transfected with a non-target shRNA (negative control). b Heatmap showing the transcription rate of a subset of genes showing ERβ and AGO2 binding sites within the promoter region or the gene body, expressed as fold change in ERβ + with respect to ERβ − cells (ERβ+/ERβ−) or in ERβ + cells after AGO2 knock-down with respect to control cells (shAGO2 in ERβ+). Genes in red and italics did not show statistically significant changes in shAGO2 cells. c Co-transcriptional pre-mRNA splicing modulation by ERβ. Number of introns showing increased or decreased retention (FDR ≤ 0.05) in Ct-ERβ compared to wild-type ERβ − cells. A positive intron retention ratio indicates reduced splicing efficiency and, conversely, a negative intron retention ratio indicates increased splicing efficiency. d Co-transcriptional pre-mRNA splicing modulation by AGO2 in ERβ-expressing cells. Introns showing increased or decreased retention (FDR ≤ 0.05) after AGO2 silencing in Ct-ERβ cells. e Bar plot showing, among ERβ-dependent splicing events, those affected by AGO2 knock-down

Back to article page