Skip to main content
Figure 4 | Genome Biology

Figure 4

From: Expansion of a novel endogenous retrovirus throughout the pericentromeres of modern humans

Figure 4

Genomic structure and nucleotide differences of full-length K111, K222, and K222/K111 recombinant proviruses. (A) Highlighter plot showing the nucleotide differences between K111 along with K222 provirus found in a WGS database (Acc. No. AADC01167561.1) and K222/K111 recombinant provirus isolated from the genome of the H9 cell line indicated by tick marks (green ticks: A; red ticks: T; orange ticks: G; light blue ticks: C). Gray boxes denote areas deleted in K222. (B) Recombination plot of K222/K111 provirus. The similarity between the query K222/K111 recombinant sequence and each parental K222 and K111 provirus is plotted for each position of an approximately 10 Kb bp sliding window. The Y axis represents the match fraction of the query sequence to each parental sequence (red and blue lines). A match fraction of 1 means 100% identity. The recombinant query sequence is illustrated on the X axis (upper red/blue line at the top). Arrows indicate recombination spots. (C) A phylogenetic dendrogram displays three major clades; the 3′ LTR K111 (sometimes called K105) sequences previously reported (10; black), 3′ LTR K222 sequences found in human databases (blue), and the 3′ LTR of K222 sequences found in H9 and HUT78 cell lines (yellow). Previous sequences assigned by us as K105J and K105K were indeed K222 sequences and were flanked by pCER:D22Z8 repeat. (D) K222 and K111 proviruses arose by independent infections. A Bayesian inference tree shows the clustering of the 5′ and 3′ LTRs from various HERV-K (HML-2) proviruses. The K111 5′ LTR (red) and the 3′ LTRs of K111 (blue) and K222 (gray) proviruses cluster in three independent clades with a common ancestor. Posterior probability values > 70 are shown.

Back to article page